Basic Arithmetic : Basic Arithmetic

Study concepts, example questions & explanations for Basic Arithmetic

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Least Common Denominator

What is the least common denominator between the following fractions: .

Possible Answers:

Correct answer:

Explanation:

The first step of finding the LCD of a set of fractions is to make sure each of the fractions are simplified.  and  are already simplified. However,  can be reduced to . This makes the problem much easier because we now only have two different denominators to work with. From here, we simply multiply each denominator by increasing integers until we get a common denominator. It is important to always increase the lower of the two denominators. For instance, we have 4 and 3 as denominators in this problem. Since 3 is lower, we will multiply it by 2, getting 6. Now we have 4 and 6. 4 is lower, so we multiply it by 2 to get 8. Now we have 8 and 6. 6 is lower, so we multiply the original denominator of 3 by 3, resulting in denominators of 8 and 9. Following this trend, we get: 12 and 9, then 12 and 12. Therefore, 12 will be the least common denominator.

 

While simply multiplying all of the denominators will get you a common denominator between the fractions, it does not always give you the LCD.

Example Question #1 : Least Common Denominator

What's the least common denominator between  and ?

Possible Answers:

Correct answer:

Explanation:

When finding the least common denominator, the quickest way is to multiply the numbers out.

In this case  and  are both primes and don't share any factors other than .

We can multiply them to get  as the final answer.

 

Another approach is to list out all the factors of each number and see which factor is in both sets first.

Notice  appears in both sets before any other number therefore, this is the least common denominator.

Example Question #1 : Least Common Denominator

What's the least common denominator of  and ?

Possible Answers:

Correct answer:

Explanation:

When finding the least common denominator, the quickest way is to multiply the numbers out.

In this case  and  share a factor other than  which is . We can divide those numbers by  to get  and  leftover.

Now, they don't share a common factor so basically multiply them out with the shared factor. Answer is .

 

Another approach is to list out the factors of both number and find the factor that appears in both sets first.

We can see that  appears in both sets before any other number thus, this is our answer.

 

Example Question #1 : Least Common Denominator

What's the least common denominator of  and ?

Possible Answers:

Correct answer:

Explanation:

When finding the least common denominator, the quickest way is to multiply the numbers out. In this case  and  share a factor other than  which is . We can divide those numbers by  to get  and  leftover. Now, they don't share a common factor so basically multiply them out with the shared factor. Answer is .

Another approach is to list out the factors of each number. The factor that appears first in both set is the least common denominator.

We see that  appears first in both sets and thus, is the least common denominator.

Example Question #2 : Least Common Denominator

What's the least common denominator among , and ?

Possible Answers:

Correct answer:

Explanation:

When finding the least common denominator, the quickest way is to multiply the numbers out. In the case of finding least common denominators among three or more numbers, it's critical there are no common factors between two of the denominators and of course all 3. This will ensure the answer will always be the least common denominator. 

Say we just multiplied the numbers out. It's basically  or . That number seems big but lets cut this in half and check   divides evenly into , and . Lets check  doesn't divide evenly into  so  is the answer. 

So this goes back to the statement: "In the case of finding least common denominators among three or more numbers, it's critical there are no common factors between two of the denominators and of course all 3." If I factored a , I can reduce the  and  but not the . That is ok. Now the leftover values are , and . They only share a factor of . So let's multiply the leftover values and the factored value to get 

Example Question #261 : Basic Arithmetic

Solve for x

Possible Answers:

Correct answer:

Explanation:

Start by adding 10 to both sides.

Multiply both side by 9 to get rid of the fraction.

Divide by 5

Since all the answer choices have mixed fractions, you will also need to reduce down to a mixed fraction

Example Question #262 : Basic Arithmetic

Solve for .

Possible Answers:

Correct answer:

Explanation:

Add both sides by 9 to isolate the x on one side.

Multiply both sides by 5.

Divide boths ides b 9.

Example Question #263 : Basic Arithmetic

Solve for .

Possible Answers:

Correct answer:

Explanation:

First, add 10 to both sides so the term with "z" is isolated on one side.

To get rid of the fraction, multiply both sides by 3.

Divide by 2.

Example Question #1 : Solving Linear Equations With Fractions

Solve for 

Possible Answers:

Correct answer:

Explanation:

Start by adding the terms with  together. Find the least common denominator for the two fractions.

Now, multiply both sides by 10.

Then divide both sides by 23.

Example Question #264 : Basic Arithmetic

Solve for .

Possible Answers:

Correct answer:

Explanation:

Start by adding 9 to both sides.

Next, multiply both sides by 3.

Finally, divide both sides by 2.

Learning Tools by Varsity Tutors