All Basic Arithmetic Resources
Example Questions
Example Question #1 : Least Common Denominator
What is the least common denominator between the following fractions: .
The first step of finding the LCD of a set of fractions is to make sure each of the fractions are simplified. and are already simplified. However, can be reduced to . This makes the problem much easier because we now only have two different denominators to work with. From here, we simply multiply each denominator by increasing integers until we get a common denominator. It is important to always increase the lower of the two denominators. For instance, we have 4 and 3 as denominators in this problem. Since 3 is lower, we will multiply it by 2, getting 6. Now we have 4 and 6. 4 is lower, so we multiply it by 2 to get 8. Now we have 8 and 6. 6 is lower, so we multiply the original denominator of 3 by 3, resulting in denominators of 8 and 9. Following this trend, we get: 12 and 9, then 12 and 12. Therefore, 12 will be the least common denominator.
While simply multiplying all of the denominators will get you a common denominator between the fractions, it does not always give you the LCD.
Example Question #1 : Least Common Denominator
What's the least common denominator between and ?
When finding the least common denominator, the quickest way is to multiply the numbers out.
In this case and are both primes and don't share any factors other than .
We can multiply them to get as the final answer.
Another approach is to list out all the factors of each number and see which factor is in both sets first.
Notice appears in both sets before any other number therefore, this is the least common denominator.
Example Question #1 : Least Common Denominator
What's the least common denominator of and ?
When finding the least common denominator, the quickest way is to multiply the numbers out.
In this case and share a factor other than which is . We can divide those numbers by to get and leftover.
Now, they don't share a common factor so basically multiply them out with the shared factor. Answer is .
Another approach is to list out the factors of both number and find the factor that appears in both sets first.
We can see that appears in both sets before any other number thus, this is our answer.
Example Question #1 : Least Common Denominator
What's the least common denominator of and ?
When finding the least common denominator, the quickest way is to multiply the numbers out. In this case and share a factor other than which is . We can divide those numbers by to get and leftover. Now, they don't share a common factor so basically multiply them out with the shared factor. Answer is .
Another approach is to list out the factors of each number. The factor that appears first in both set is the least common denominator.
We see that appears first in both sets and thus, is the least common denominator.
Example Question #2 : Least Common Denominator
What's the least common denominator among , , and ?
When finding the least common denominator, the quickest way is to multiply the numbers out. In the case of finding least common denominators among three or more numbers, it's critical there are no common factors between two of the denominators and of course all 3. This will ensure the answer will always be the least common denominator.
Say we just multiplied the numbers out. It's basically or . That number seems big but lets cut this in half and check divides evenly into , , and . Lets check . doesn't divide evenly into so is the answer.
So this goes back to the statement: "In the case of finding least common denominators among three or more numbers, it's critical there are no common factors between two of the denominators and of course all 3." If I factored a , I can reduce the and but not the . That is ok. Now the leftover values are , , and . They only share a factor of . So let's multiply the leftover values and the factored value to get
Example Question #261 : Basic Arithmetic
Solve for x
Start by adding 10 to both sides.
Multiply both side by 9 to get rid of the fraction.
Divide by 5
Since all the answer choices have mixed fractions, you will also need to reduce down to a mixed fraction
Example Question #262 : Basic Arithmetic
Solve for .
Add both sides by 9 to isolate the x on one side.
Multiply both sides by 5.
Divide boths ides b 9.
Example Question #263 : Basic Arithmetic
Solve for .
First, add 10 to both sides so the term with "z" is isolated on one side.
To get rid of the fraction, multiply both sides by 3.
Divide by 2.
Example Question #1 : Solving Linear Equations With Fractions
Solve for
Start by adding the terms with together. Find the least common denominator for the two fractions.
Now, multiply both sides by 10.
Then divide both sides by 23.
Example Question #264 : Basic Arithmetic
Solve for .
Start by adding 9 to both sides.
Next, multiply both sides by 3.
Finally, divide both sides by 2.