AP Calculus AB : Derivative rules for sums, products, and quotients of functions

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the function, 

 

\displaystyle y =x^2\sin(3x)

 

 

Possible Answers:

\displaystyle \frac{dy}{dx} =-3x^2\cos(x)+2x\sin(x)

\displaystyle \frac{dy}{dx} =x[3x\cos(3x)+2]

\displaystyle \frac{dy}{dx} =6x\cos(3x)

\displaystyle \frac{dy}{dx} =3x^2\cos(3x)+2x\sin(3x)

\displaystyle \frac{dy}{dx} =x^2\cos(3x)+2x\cos(3x)

Correct answer:

\displaystyle \frac{dy}{dx} =3x^2\cos(3x)+2x\sin(3x)

Explanation:

\displaystyle y =x^2\sin(3x)

 

Differentiate both sides and proceed with the product rule: 

                                      

\displaystyle \frac{dy}{dx}=\frac{d}{dx}[x^2\sin(3x)]                                                                                      (1)

\displaystyle \frac{dy}{dx}= x^2\frac{d}{dx}\sin(3x)+ \sin(3x)\frac{d}{dx}x^2

Evaluate the derivatives in each term. For the first term,  

\displaystyle =x^2\underbrace{\frac{d}{dx}\sin(3x)} + \sin(3x)\frac{d}{dx}x^2                                                (2)

 apply the chain rule, 

\displaystyle \frac{d}{dx}sin(3x)=3\cos(3x)

 

So now the first term in equation (2) can be written, 

\displaystyle x^2\frac{d}{dx}\sin(3x)=x^2[3\cos(3x)]=3x^2\cos(3x)                            (3)

 

The second term in equation (2) is easy, this is just the product of  \displaystyle \sin(3x)multiplied by the derivative of \displaystyle x^2

 

\displaystyle \sin(3x)\frac{d}{dx}x^2 = 2x\sin(3x)                                                               (4)

 

Combine equations (3) and (4) to write the derivative, 

 

\displaystyle \frac{dy}{dx} =3x^2\cos(3x)+2x\sin(3x)

 

 

 

 

 

   

 

 

Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative. 

\displaystyle \sin (x)x^2

Possible Answers:

\displaystyle \cos (x)x+2x\sin (x)

\displaystyle \cos (x)x^2+2x\sin (x)

\displaystyle \cos (x)x^2+2x^2\sin (x)

\displaystyle \sin (x)x^2+2x\sin (x)

Correct answer:

\displaystyle \cos (x)x^2+2x\sin (x)

Explanation:

Use the product rule to find the derivative. 

\displaystyle \cos (x)x^2+2x\sin (x)

Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative.

\displaystyle x^3+4x^2-x

Possible Answers:

\displaystyle x^2+4x-1

\displaystyle 3x^2+8x-1

\displaystyle 4x^4

\displaystyle x^2+4x

Correct answer:

\displaystyle 3x^2+8x-1

Explanation:

Use the power rule to find the derivative.

\displaystyle \frac{d}{dx}x^3=3x^2

\displaystyle \frac{d}{dx}4x^2=8x

\displaystyle \frac{d}{dx}-x=-1

Thus, the derivative is \displaystyle 3x^2+8x-1

Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find \displaystyle f'(x) given \displaystyle f(x)=3sin(x^2)*e^{2x-1}

Possible Answers:

\displaystyle f'(x)=6e^{2x-1}(xcos(x^2)+sin(x^2))

\displaystyle f'(x)=6e^{2x-1}(cos(2x)+sin(x^2))

\displaystyle f'(x)=6xcos(x^2)*e^{2x-1}+3sin(x^2)*(2x-1)e^{2x-2}

\displaystyle f'(x)=12xe^{2x-1}(cos(x^2))

\displaystyle f'(x)=\frac{6e^{2x-1}(xcos(x^2)*sin(x^2))}{e^{4x-2}}

Correct answer:

\displaystyle f'(x)=6e^{2x-1}(xcos(x^2)+sin(x^2))

Explanation:

Here we use the product rule: \displaystyle \frac{\mathrm{d} }{\mathrm{d} x}(F(x)\cdot G(x))=F'(x)\cdot G(x)+F(x)\cdot G'(x)

Let \displaystyle F(x)=3sin(x^2) and \displaystyle G(x)=e^{2x-1}

Then \displaystyle F'(x)=3cos(x^2)\cdot2x (using the chain rule)

and \displaystyle G'(x)=e^{2x-1}\cdot2 (using the chain rule)

Subbing these values back into our equation gives us

\displaystyle f'(x)=3cos(x^2)\cdot2x\cdot e^{2x-1}+3sin(x^2)\cdot e^{2x-1}\cdot2

Simplify by combining like-terms

\displaystyle f'(x)=6xcos(x^2)\cdot e^{2x-1}+6sin(x^2)\cdot e^{2x-1}

and pulling out a \displaystyle 6e^{2x-1} from each term gives our final answer

\displaystyle f'(x)=6e^{2x-1}(xcos(x^2)+sin(x^2))

 

Example Question #1 : Derivative Rules For Sums, Products, And Quotients Of Functions

If \displaystyle f(x)=\pi\sin(ex), evaluate \displaystyle f'(0).

Possible Answers:

\displaystyle \pi

\displaystyle e

\displaystyle 1

\displaystyle e\pi

\displaystyle 0

Correct answer:

\displaystyle e\pi

Explanation:

When evaluating the derivative, pay attention to the fact that \displaystyle e,\pi are constants, (not variables) and are treated as such.

 

\displaystyle f'(x)=\pi\cos(ex)\times (ex)'=e\pi\cos(ex).

and hence

\displaystyle f'(0)=e\pi\cos(e(0))=e\pi.

Example Question #2 : Derivative Rules For Sums, Products, And Quotients Of Functions

If \displaystyle f(x)=1+x+x^2+x^3+x^4, evaluate \displaystyle f'(2)

Possible Answers:

\displaystyle 0

\displaystyle 51

\displaystyle 49

\displaystyle 21

\displaystyle 31

Correct answer:

\displaystyle 49

Explanation:

To obtain an expression for \displaystyle f'(x), we can take the derivative of \displaystyle f(x) using the sum rule.

\displaystyle f'(x)=0+1+2x+3x^2+4x^3.

Substituting \displaystyle 2 into this equation gives us

\displaystyle f'(2) =0+1+4+12+32

\displaystyle =49.

Example Question #3 : Derivative Rules For Sums, Products, And Quotients Of Functions

If \displaystyle f(x)=\frac{x\tan^{-1}(x)}{\ln(x)}, find \displaystyle f'(x).

Possible Answers:

\displaystyle \frac{\ln(x)(\frac{x+1}{1+x^2})-\tan^{-1}x}{\ln(x^2)}

\displaystyle \frac{\frac{1}{x}(\frac{x}{1+x^2}+\tan^{-1}x)-\tan^{-1}x}{\ln(x^2)}

\displaystyle \frac{\ln(x)(\frac{x}{1+x^2}+\tan^{-1}x)-\tan^{-1}x}{(\ln(x))^2}

\displaystyle \frac{\ln(x)(\frac{1}{1+x^2}+\tan^{-1}x)-\tan^{-1}x}{(\ln(x))^2}

\displaystyle \frac{\ln(x)(\frac{1}{1+x^2}+\tan^{-1}x)-\tan^{-1}x}{\ln(x^2)}

Correct answer:

\displaystyle \frac{\ln(x)(\frac{x}{1+x^2}+\tan^{-1}x)-\tan^{-1}x}{(\ln(x))^2}

Explanation:

To find \displaystyle f'(x), we will need to use the quotient rule; \displaystyle \frac{gf'-fg'}{g^2}.

\displaystyle f(x)= \frac{x\tan^{-1}x}{\ln(x)}. Start

\displaystyle f'(x)= \frac{(\ln(x))(x\tan^{-1}x)'-(x\tan^{-1}x)(\ln(x))'}{(\ln(x))^2}. Use the quotient rule.

\displaystyle = \frac{(\ln(x))(x(\frac{1}{1+x^2})+1(\tan^{-1}x))-(x\tan^{-1}x)(\frac{1}{x})}{(\ln(x))^2}. Take the derivatives inside of the quotient rule. The derivative of \displaystyle x\tan^{-1}x uses the product rule.

\displaystyle =\frac{\ln(x)(\frac{x}{1+x^2}+\tan^{-1}x)-\tan^{-1}x}{(\ln(x))^2}. Simplify to match the correct answer.

Example Question #2 : Derivative Rules For Sums, Products, And Quotients Of Functions

Find the derivative of the following equation:

\displaystyle h(x) = \sin(x)\cos(x)

Possible Answers:

\displaystyle -\sin(x)\cos(x)

\displaystyle \cos ^{2}(x)

\displaystyle \cos ^{2}(x)+\sin^{2}(x)

None of the other answers

\displaystyle \cos^{2}(x)-\sin^{2}(x)

Correct answer:

\displaystyle \cos^{2}(x)-\sin^{2}(x)

Explanation:

Because this problem contains two functions multiplied together that can't be simplified any further, it calls for the product rule, which states that \displaystyle \frac{d}{dx}(f(x)g(x)) = f{}'(x)g(x) + f(x)g{}'(x).

By using this rule, we get the answer:

\displaystyle \cos(x)\cos(x) + \sin(x)(-\sin (x))

By simplifying, we conclude that the derivative is equal to 

\displaystyle \cos ^{2}(x)-\sin ^{2}(x).

Example Question #4 : Derivative Rules For Sums, Products, And Quotients Of Functions

\displaystyle \begin{align*}&\text{Calculate the derivative of the function}\\&-\frac{(114cos(19x))}{x^{20}}\end{align*}

Possible Answers:

\displaystyle \frac{(2280cos(19x))}{x^{21}}+\frac{ (2166sin(19x))}{x^{20}}

\displaystyle \frac{120}{x^{21}}- 361sin(19x)

\displaystyle -\frac{(43320sin(19x))}{x^{21}}

\displaystyle -\frac{ (43320cos(19x))}{x^{21}}-\frac{ (43320sin(19x))}{x^{20}}

Correct answer:

\displaystyle \frac{(2280cos(19x))}{x^{21}}+\frac{ (2166sin(19x))}{x^{20}}

Explanation:

\displaystyle \begin{align*}&\text{The function that we have been given can be seen as two smaller functions}\\&\text{multiplied together, the first being: }cos(19x)\\&\text{and the second being: }\frac{1}{x^{20}}\\&\text{With the product scaled by }-114\\&\text{To perform the derivative, }\text{ we'll wish to use the product rule, }d[uv]=udv+vdu\\&\text{along with the following:}\\&d[cos(ax)]=-asin(ax)dx\\&d[x^a]=ax^{a-1}dx\\&\text{From the above we can continue:}\\&u=cos(19x);du=-19sin(19x)\\&v=\frac{1}{x^{20}};dv=-\frac{20}{x^{21}}\\&\text{We can then combine these terms (Don't forget the scalar!)}\\&\text{So the derivative is:}\\&\frac{(2280cos(19x))}{x^{21}}+\frac{ (2166sin(19x))}{x^{20}}\end{align*}

Example Question #5 : Derivative Rules For Sums, Products, And Quotients Of Functions

\displaystyle \begin{align*}&\text{Take the derivative with respect to }x\text{ of the function}\\&y=-\frac{(380tan(17x))}{2^{(20x)}}\end{align*}

Possible Answers:

\displaystyle \frac{(7600\cdot (17tan(17x)^{2} + 17))}{2^{(20x)}}+\frac{ (129200tan(17x)ln(2))}{2^{(20x)}}

\displaystyle \frac{(7600tan(17x)ln(2))}{2^{(20x)}}-\frac{ (380\cdot (17tan(17x)^{2} + 17))}{2^{(20x)}}

\displaystyle \frac{(380ln(2))}{2^{(20x)}}+ 340tan(17x)^{2} + 340

\displaystyle \frac{(20ln(2)\cdot (6460tan(17x)^{2} + 6460))}{2^{(20x)}}

Correct answer:

\displaystyle \frac{(7600tan(17x)ln(2))}{2^{(20x)}}-\frac{ (380\cdot (17tan(17x)^{2} + 17))}{2^{(20x)}}

Explanation:

\displaystyle \begin{align*}&\text{The function that we have been given can be seen as two smaller functions}\\&\text{multiplied together, the first being: }tan(17x)\\&\text{and the second being: }\frac{1}{2^{(20x)}}\\&\text{With the product scaled by }-380\\&\text{To perform the derivative, }\text{ we'll wish to use the product rule, }d[uv]=udv+vdu\\&\text{along with the following:}\\&d[tan(ax)]=\frac{adx}{cos^2(ax)}=(atan^2(ax)+a)dx\\&d[b^{ax}]=ab^{ax}ln(b)sx\\&\text{From the above we can continue:}\\&u=tan(17x);du=17tan(17x)^{2} + 17\\&v=\frac{1}{2^{(20x)}};dv=-\frac{(20ln(2))}{2^{(20x)}}\\&\text{We can then combine these terms (Don't forget the scalar!)}\\&\text{So the derivative is:}\\&\frac{(7600tan(17x)ln(2))}{2^{(20x)}}-\frac{ (380\cdot (17tan(17x)^{2} + 17))}{2^{(20x)}}\end{align*}

Learning Tools by Varsity Tutors