AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #801 : Ap Calculus Ab

Evaluate the integral \displaystyle \int_0^{\pi/2} \frac{\sin^2(x)}{\sec(x)}dx

Possible Answers:

\displaystyle 1

\displaystyle \frac{1}{27}

\displaystyle 0

\displaystyle \frac{1}{3}

Correct answer:

\displaystyle \frac{1}{3}

Explanation:

To evaluate this integral, we must first rewrite the \displaystyle \sec from the denominator, as a \displaystyle \cos in the numerator. This gives us

\displaystyle \int_0^{\pi/2} \sin^2(x)\cos(x)dx

Since the \displaystyle \sin has an exponent, we will pick it for our u-substitution.

\displaystyle u = \sin(x)

Now we find \displaystyle du by differentiating.

\displaystyle du = \cos(x)dx

This gives us the cosine piece. Writing everything in terms or u, we get

\displaystyle \int_{u_a}^{u_b} u^2du

To integrate this we use the following basic integral form:\displaystyle \int_a^b u^n du = [\frac{1}{n+1}u^{n+1}]|_a^b

Applying this to our integral, we get

\displaystyle [\frac{1}{3}u^3]

Now we can "un-substitute" to get back to x-terms. Replacing \displaystyle u with \displaystyle \sin(x), we get

\displaystyle [\frac{1}{3}\sin^3(x)]|_0^{\pi/2}

Now we use the 2nd Fundamental Theorem of Calculus. We plug in the upper bound of \displaystyle \pi/2 , then plug in the lower bound of \displaystyle 0, and subtract.

Doing this we get

\displaystyle [\frac{1}{3}\sin^3(\pi/2)]-[\frac{1}{3}\sin^3(0)]

\displaystyle [\frac{1}{3}(1^3)]-[\frac{1}{3}(0^3)]

\displaystyle \frac{1}{3}(1)-\frac{1}{3}(0)

\displaystyle \frac{1}{3}

This is the correct answer.

Example Question #1 : Basic Properties Of Definite Integrals (Additivity And Linearity)

If \displaystyle f(x),g(x) are continuous functions, \displaystyle g(x) = \frac{1}{2}f(x),  \displaystyle \int_0^4 f(x) dx = 6, and \displaystyle \int_4^{10} g(x)dx = 8, find \displaystyle \int_0^{10} f(x) dx.

Possible Answers:

\displaystyle 14

\displaystyle 0

Not enough information

\displaystyle 22

\displaystyle 16

Correct answer:

\displaystyle 22

Explanation:

We proceed as follows

\displaystyle \int_0^{10} f(x) dx. (Start)

\displaystyle =\int_0^4 f(x) dx + \int_4^{10}f(x)dx. (Break up the integral using the additive rule.)

\displaystyle =\int_0^4 f(x) dx + \int_4^{10}2g(x)dx. (We don't have information about the 2nd integral, so we solve our first equation for \displaystyle f(x) and replace it in this integral.)

\displaystyle =\int_0^4 f(x) dx + 2\int_4^{10}g(x)dx. (Factor out the \displaystyle 2 using linearity.)

\displaystyle =6 +2(8). (Substitute in what we were given.)

\displaystyle =22.

Example Question #1 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{24}^{9}f(x)dx=-24\\&\int_{24}^{26}f(x)dx=11\\&\int_{26}^{32}f(x)dx=24\\&\int_{32}^{34}f(x)dx=34\\&\text{Calculate from the above values }\int_{9}^{34}f(x)dx\end{align*}

Possible Answers:

\displaystyle -58

\displaystyle 93

\displaystyle 58

\displaystyle 45

Correct answer:

\displaystyle 93

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{9}^{34}f(x)dx\\&\int_{9}^{34}f(x)dx=-(-24)+(11)+(24)+(34)\\&\int_{9}^{34}f(x)dx=93\\&\end{align*}

Example Question #2 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{13}^{2}f(x)dx=-94\\&\int_{13}^{19}f(x)dx=-23\\&\int_{23}^{19}f(x)dx=-32\\&\int_{28}^{23}f(x)dx=-18\\&\int_{31}^{28}f(x)dx=-84\\&\text{Determine }\int_{2}^{31}f(x)dx\end{align*}

Possible Answers:

\displaystyle -178

\displaystyle 205

\displaystyle -251

\displaystyle 178

Correct answer:

\displaystyle 205

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{2}^{31}f(x)dx\\&\int_{2}^{31}f(x)dx=-\int_{13}^{2}f(x)dx+\int_{13}^{19}f(x)dx-\int_{23}^{19}f(x)dx-\int_{28}^{23}f(x)dx-\int_{31}^{28}f(x)dx\\&\int_{2}^{31}f(x)dx=-(-94)+(-23)-(-32)-(-18)-(-84)\\&\int_{2}^{31}f(x)dx=205\\&\end{align*}

Example Question #3 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{-10}^{-5}f(x)dx=95\\&\int_{-1}^{-5}f(x)dx=-41\\&\int_{6}^{-1}f(x)dx=-26\\&\int_{21}^{6}f(x)dx=-38\\&\int_{28}^{21}f(x)dx=62\\&\text{Calculate from the above values }\int_{-10}^{28}f(x)dx\end{align*}

Possible Answers:

\displaystyle -33

\displaystyle 138

\displaystyle 33

\displaystyle 52

Correct answer:

\displaystyle 138

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{-10}^{28}f(x)dx\\&\int_{-10}^{28}f(x)dx=\int_{-10}^{-5}f(x)dx-\int_{-1}^{-5}f(x)dx-\int_{6}^{-1}f(x)dx-\int_{21}^{6}f(x)dx-\int_{28}^{21}f(x)dx\\&\int_{-10}^{28}f(x)dx=(95)-(-41)-(-26)-(-38)-(62)\\&\int_{-10}^{28}f(x)dx=138\\&\end{align*}

Example Question #4 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{-3}^{9}f(x)dx=-67\\&\int_{9}^{22}f(x)dx=74\\&\int_{37}^{22}f(x)dx=-18\\&\int_{39}^{37}f(x)dx=-67\\&\int_{42}^{39}f(x)dx=68\\&\int_{42}^{45}f(x)dx=86\\&\text{Calculate from the above values }\int_{-3}^{45}f(x)dx\end{align*}

Possible Answers:

\displaystyle 76

\displaystyle 110

\displaystyle -19

\displaystyle 19

Correct answer:

\displaystyle 110

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{-3}^{45}f(x)dx\\&\int_{-3}^{45}f(x)dx=\int_{-3}^{9}f(x)dx+\int_{9}^{22}f(x)dx-\int_{37}^{22}f(x)dx-\int_{39}^{37}f(x)dx-\int_{42}^{39}f(x)dx+\int_{42}^{45}f(x)dx\\&\int_{-3}^{45}f(x)dx=(-67)+(74)-(-18)-(-67)-(68)+(86)\\&\int_{-3}^{45}f(x)dx=110\\&\end{align*}

Example Question #5 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{-9}^{0}f(x)dx=62\\&\int_{13}^{0}f(x)dx=-46\\&\int_{18}^{13}f(x)dx=20\\&\text{Use the above values to find }\int_{-9}^{18}f(x)dx\end{align*}

Possible Answers:

\displaystyle -42

\displaystyle 88

\displaystyle 36

\displaystyle 42

Correct answer:

\displaystyle 88

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{-9}^{18}f(x)dx\\&\int_{-9}^{18}f(x)dx=\int_{-9}^{0}f(x)dx-\int_{13}^{0}f(x)dx-\int_{18}^{13}f(x)dx\\&\int_{-9}^{18}f(x)dx=(62)-(-46)-(20)\\&\int_{-9}^{18}f(x)dx=88\\&\end{align*}

Example Question #1 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{-10}^{3}f(x)dx=95\\&\int_{3}^{13}f(x)dx=63\\&\int_{23}^{13}f(x)dx=78\\&\int_{23}^{37}f(x)dx=-54\\&\int_{37}^{50}f(x)dx=-56\\&\int_{50}^{56}f(x)dx=77\\&\text{Use the above values to find }\int_{-10}^{56}f(x)dx\end{align*}

Possible Answers:

\displaystyle 203

\displaystyle -172

\displaystyle 172

\displaystyle 47

Correct answer:

\displaystyle 47

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{-10}^{56}f(x)dx\\&\int_{-10}^{56}f(x)dx=\int_{-10}^{3}f(x)dx+\int_{3}^{13}f(x)dx-\int_{23}^{13}f(x)dx+\int_{23}^{37}f(x)dx+\int_{37}^{50}f(x)dx+\int_{50}^{56}f(x)dx\\&\int_{-10}^{56}f(x)dx=(95)+(63)-(78)+(-54)+(-56)+(77)\\&\int_{-10}^{56}f(x)dx=47\\&\end{align*}

Example Question #6 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{-4}^{6}f(x)dx=5\\&\int_{12}^{6}f(x)dx=90\\&\int_{15}^{12}f(x)dx=73\\&\int_{19}^{15}f(x)dx=-70\\&\int_{22}^{19}f(x)dx=97\\&\int_{24}^{22}f(x)dx=36\\&\text{Calculate from the above values }\int_{-4}^{24}f(x)dx\end{align*}

Possible Answers:

\displaystyle 231

\displaystyle 31

\displaystyle -31

\displaystyle -221

Correct answer:

\displaystyle -221

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{-4}^{24}f(x)dx\\&\int_{-4}^{24}f(x)dx=\int_{-4}^{6}f(x)dx-\int_{12}^{6}f(x)dx-\int_{15}^{12}f(x)dx-\int_{19}^{15}f(x)dx-\int_{22}^{19}f(x)dx-\int_{24}^{22}f(x)dx\\&\int_{-4}^{24}f(x)dx=(5)-(90)-(73)-(-70)-(97)-(36)\\&\int_{-4}^{24}f(x)dx=-221\\&\end{align*}

Example Question #7 : Basic Properties Of Definite Integrals (Additivity And Linearity)

\displaystyle \begin{align*}&\int_{-4}^{0}f(x)dx=-13\\&\int_{15}^{0}f(x)dx=56\\&\int_{15}^{23}f(x)dx=-53\\&\int_{23}^{31}f(x)dx=96\\&\int_{31}^{32}f(x)dx=-44\\&\text{Calculate from the above values }\int_{-4}^{32}f(x)dx\end{align*}

Possible Answers:

\displaystyle -57

\displaystyle 42

\displaystyle 57

\displaystyle -70

Correct answer:

\displaystyle -70

Explanation:

\displaystyle \begin{align*}&\text{One of the principles of integrals is one of summation. If the}\\&\text{values of an integral across certain sets of points is known,}\\&\text{this could potentially be used to find integral values at other}\\&\text{points. Imagine a set of points that are in ascending numerical}\\&\text{value: a, b, c, and d. It follows that:}\\&\int_a^d=\int_a^b+\int_b^c+\int_c^d\\&\text{Another principle of integrals is that if an integral value}\\&\text{is known, to take the same integral backwards will give a negative}\\&\text{of the original value:}\\&\int_a^b=-\int_b^a\\&\text{Knowing this, we can calculate }\int_{-4}^{32}f(x)dx\\&\int_{-4}^{32}f(x)dx=\int_{-4}^{0}f(x)dx-\int_{15}^{0}f(x)dx+\int_{15}^{23}f(x)dx+\int_{23}^{31}f(x)dx+\int_{31}^{32}f(x)dx\\&\int_{-4}^{32}f(x)dx=(-13)-(56)+(-53)+(96)+(-44)\\&\int_{-4}^{32}f(x)dx=-70\\&\end{align*}

Learning Tools by Varsity Tutors