AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #91 : Chain Rule And Implicit Differentiation

Find the derivative of the function: 


Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                          REQUIRED KNOWLEDGE

*****************************************************************

This problem requires us to understand two things:

1) The derivative of the function  is always  by itself

2) By adding an operation to the variable in the exponent (in our case, the -s instead of just s), we must multiply the derivative by the derivative of the argument in the exponent. This is an application of the chain rule of derivation

 

*****************************************************************

                                          SOLUTION STEPS

***************************************************************** is given 

Thus:

   The -1 comes from the derivative of -s

Thus, the correct answer is:

*****************************************************************

                                          CORRECT ANSWER

*****************************************************************

*****************************************************************

                                               PROBLEMS?

*****************************************************************

If you did not understand the concepts required to solve this derivative problem:

  • Look into the derivative of e raised to an argument
  • Practice applying the chain rule to derivative problems

 

 

Example Question #92 : Chain Rule And Implicit Differentiation

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

Given: 

Let:

Now:

Now, we plug in sin^2(x) again

To find "chain", we must take the derivative of sin^2(x), using the product rule:

Plug in this new-found term into the chain in the above derivative:

Canceling the sin on top with a sin on bottom, we arrive at the correct answer:

*****************************************************************

                                              CORRECT ANSWER

*****************************************************************

Example Question #93 : Chain Rule And Implicit Differentiation

Given:

 

Find:

 

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                    STEPS

*****************************************************************

Understand that if:

,

then:

Rearrange this as such:

We are also given:

Thus,

Plugging in 3dt into our previous dx allows us to look for dy/dt

Rearranging, we arrive at the correct answer:

*****************************************************************

                                           CORRECT ANSWER

*****************************************************************

Example Question #93 : Chain Rule And Implicit Differentiation

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                     STEPS

*****************************************************************

 Given:

Implement the sin^-1 derivative:

Understand that we find our chained term by deriving the compound element(in this case, x^3)

Plug our new-found element in for the chain, and multiply accordingly:

After multiplying, we arrive at the correct answer:

*****************************************************************

                                                  ANSWER

*****************************************************************

Example Question #271 : Derivatives

Find the derivative of the function:

Possible Answers:

Correct answer:

Explanation:

*****************************************************************

                                                       STEPS

*****************************************************************

 Given:

Apply the derivative of arc-tangent (tan^-1)

Understand that to find the (chain term), we must derive the compound function element, in this case it is (1-r^2)

Now, we plug -2r in for the chain term

Multiplying it across, we arrive at the final, correct answer:

*****************************************************************

                                                     ANSWER

*****************************************************************

Example Question #95 : Chain Rule And Implicit Differentiation

Find :

, where  is a function of x.

Possible Answers:

Correct answer:

Explanation:

The derivative of the function is equal to

and was found using the following rules:

Note that because  is a function of x, when we use the product rule, we must include its derivative.

Example Question #272 : Derivatives

Calculate the derivative of .

Possible Answers:

Correct answer:

Explanation:

We know how to take the derivative of , but not , so let's use the chain rule.

According to the chain rule, we should take the derivative of the outside function and multiply it by the derivative of the inside function. This gives us:

Remember that .

Our final answer:

Example Question #101 : Chain Rule And Implicit Differentiation

Find the derivative of .

Possible Answers:

Correct answer:

Explanation:

There are two ways to do this problem.

Method 1: Use the power rule to turn into , the derivative of which is .

Method 2: Use the chain rule.

Either way, the answer is .

Example Question #101 : Chain Rule And Implicit Differentiation

Find the derivative of .

Possible Answers:

Correct answer:

Explanation:

Using the chain rule :

Example Question #192 : Computation Of The Derivative

Find the derivative of .

Possible Answers:

Correct answer:

Explanation:

First, use the chain rule :

Now we have to use the product rule

Our final answer:

Learning Tools by Varsity Tutors