AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #241 : Ap Calculus Ab

Evaluate the following indefinite integral.

\displaystyle \int (4x^7+x^4+x)dx

Possible Answers:

\displaystyle {2}x^8+{5}x^5+{2}x^2+C

\displaystyle \frac{1}{2}x^8+\frac{1}{5}x^4+\frac{1}{2}x^2

\displaystyle \frac{1}{2}x^8+\frac{1}{5}x^5+\frac{1}{2}x^2+C

\displaystyle x^8+x^5+x^2+C

\displaystyle \frac{1}{7}x^7+\frac{1}{4}x^4+x+C

Correct answer:

\displaystyle \frac{1}{2}x^8+\frac{1}{5}x^5+\frac{1}{2}x^2+C

Explanation:

Use the inverse Power Rule to evaluate the integral.  We know that \displaystyle \int x^n dx= \frac{x^{n+1}}{n+1}+C for \displaystyle n \ne -1.  We see that this rule tells us to increase the power of \displaystyle x by 1 and multiply by \displaystyle \frac{1}{n+1}.  Next always add your constant of integration that would be lost in the differentiation.  Take the derivative of your answer to check your work.

Example Question #242 : Ap Calculus Ab

Evaluate the following indefinite integral.

\displaystyle \int 3y dy

Possible Answers:

\displaystyle \frac{1}{2}y^2+C

\displaystyle 3y+C

\displaystyle \frac{3}{2}y^2+C

\displaystyle \frac{1}{3}y^2+C

\displaystyle 3y^2+C

Correct answer:

\displaystyle \frac{3}{2}y^2+C

Explanation:

Use the inverse Power Rule to evaluate the integral.  Firstly, constants can be taken out of integrals, so we pull the 3 out front.  Next, according to the inverse power rule, we know that \displaystyle \int x^n dx= \frac{x^{n+1}}{n+1}+C for \displaystyle n \ne -1.  We see that this rule tells us to increase the power of \displaystyle x by 1 and multiply by \displaystyle \frac{1}{n+1}. Next always add your constant of integration that would be lost in the differentiation.  Take the derivative of your answer to check your work.

Example Question #243 : Ap Calculus Ab

Evaluate the following indefinite integral.

\displaystyle \int (x-2x^3+1)dx

Possible Answers:

\displaystyle 2x^2-4x^4+x+C

\displaystyle 2x^2-2x^4+x+C

\displaystyle \frac{1}{2}x^2+\frac{1}{2}x^4+x+C

\displaystyle \frac{1}{2}x^2-\frac{1}{2}x^4+x+C

\displaystyle \frac{1}{3}x^3-\frac{3}{2}x^2+C

Correct answer:

\displaystyle \frac{1}{2}x^2-\frac{1}{2}x^4+x+C

Explanation:

Use the inverse Power Rule to evaluate the integral.  We know that \displaystyle \int x^n dx= \frac{x^{n+1}}{n+1}+C for \displaystyle n \ne -1.  We see that this rule tells us to increase the power of \displaystyle x by 1 and multiply by \displaystyle \frac{1}{n+1}.  Next always add your constant of integration that would be lost in the differentiation.  Take the derivative of your answer to check your work.

Example Question #244 : Ap Calculus Ab

Evaluate the following indefinite integral.

\displaystyle \int (1-x)dx

Possible Answers:

\displaystyle x-x^2+C

\displaystyle x-\frac{1}{2}x^2+C

\displaystyle x+\frac{1}{2}x^2+C

\displaystyle x+x^2+C

\displaystyle x+2x^2+C

Correct answer:

\displaystyle x-\frac{1}{2}x^2+C

Explanation:

Use the inverse Power Rule to evaluate the integral.  We know that \displaystyle \int x^n dx= \frac{x^{n+1}}{n+1}+C for \displaystyle n \ne -1.  We see that this rule tells us to increase the power of \displaystyle x by 1 and multiply by \displaystyle \frac{1}{n+1}  Next always add your constant of integration that would be lost in the differentiation.  Take the derivative of your answer to check your work.

Example Question #1 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Evaluate the following indefinite integral.

\displaystyle \int \frac{1}{2}xdx

Possible Answers:

\displaystyle 4x^2+C

\displaystyle \frac{1}{2}x^2+C

\displaystyle 2x^2+C

\displaystyle \frac{1}{4}x^2+C

\displaystyle \frac{1}{2}x+C

Correct answer:

\displaystyle \frac{1}{4}x^2+C

Explanation:

Use the inverse Power Rule to evaluate the integral.  Firstly, constants can be taken out of the integral, so we pull the 1/2 out front and then complete the integration according to the rule. We know that \displaystyle \int x^n dx= \frac{x^{n+1}}{n+1}+C for \displaystyle n \ne -1.  We see that this rule tells us to increase the power of \displaystyle x by 1 and multiply by \displaystyle \frac{1}{n+1}.  Next always add your constant of integration that would be lost in the differentiation.  Take the derivative of your answer to check your work.

Example Question #1 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Evaluate the following indefinite integral.

\displaystyle \int \frac{1}{x}dx

Possible Answers:

\displaystyle e^x+C

\displaystyle 1+C

\displaystyle x+C

\displaystyle 1

\displaystyle ln|x|+C

Correct answer:

\displaystyle ln|x|+C

Explanation:

Use the inverse Power Rule to evaluate the integral.  We know that \displaystyle \int x^n dx= \frac{x^{n+1}}{n+1}+C for \displaystyle n \ne -1. But, in this case, \displaystyle n IS equal to \displaystyle -1 so a special condition of the rule applies.  We must instead use \displaystyle \int x^{-1}dx=ln|x|+C.  Evaluate accordingly.  Next always add your constant of integration that would be lost in the differentiation.  Take the derivative of your answer to check your work.

Example Question #246 : Ap Calculus Ab

Evaluate the following indefinite integral.

\displaystyle \int \frac{3}{x}dx

Possible Answers:

\displaystyle \frac{1}{3}ln|x|+C

\displaystyle \frac{3}{2}x^3+C

\displaystyle 3e^x+C

\displaystyle 3ln|x|+C

\displaystyle ln|x|+C

Correct answer:

\displaystyle 3ln|x|+C

Explanation:

Use the inverse Power Rule to evaluate the integral.  We know that \displaystyle \int x^n dx= \frac{x^{n+1}}{n+1}+C for \displaystyle n \ne -1. But, in this case, \displaystyle n IS equal to \displaystyle -1 so a special condition of the rule applies.  We must instead use \displaystyle \int x^{-1}dx=ln|x|+C.  Pull the constant "3" out front and evaluate accordingly.  Next always add your constant of integration that would be lost in the differentiation.  Take the derivative of your answer to check your work.

Example Question #247 : Ap Calculus Ab

Evaluate the following definite integral.

\displaystyle \int_{0}^{2}(x^2+3) dx

Possible Answers:

\displaystyle 5/3

\displaystyle 3x^3+6x

\displaystyle 8

\displaystyle 26/3

\displaystyle \frac{1}{3}x^3+3x+C

Correct answer:

\displaystyle 26/3

Explanation:

Unlike an indefinite integral, the definite integral must be evaluated at its limits, in this case, from 0 to 2.  First, we use our inverse power rule to find the antiderivative. So, we have that \displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}.  Once you find the antiderivative, we must remember that  int_a^bf(z)dz=F(b)-F(a).  where \displaystyle F is the indefinite integral.  So, we plug in our limits and subtract the two.  So, we have \displaystyle (\frac{1}{3}x^3+3x)|_0^2=[\frac{1}{3}2^3+3(2)]-[\frac{1}{3}0^3+3(0)]=26/3.

Example Question #11 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Evaluate the following definite integral.

\displaystyle \int_{1}^{3}6xdx

Possible Answers:

\displaystyle 6

\displaystyle 24

\displaystyle 3x^2+C

\displaystyle 6x^2

\displaystyle 27

Correct answer:

\displaystyle 24

Explanation:

Unlike an indefinite integral, the definite integral must be evaluated at its limits, in this case, from 1 to 3.  First, we use our inverse power rule to find the antiderivative. So, we have that \displaystyle \int x^ndx=\frac{x^{n+1}}{n+1}.  Once you find the antiderivative, we must remember that  int_a^bf(z)dz=F(b)-F(a).  where \displaystyle F is the indefinite integral.  So, we plug in our limits and subtract the two.  So, we have \displaystyle (3x^2)|_1^3=3(3^2)-3(1^2)=24.

Example Question #249 : Ap Calculus Ab

Evaluate the following definite integral.

\displaystyle \int_{1}^{4}\frac{1}{x}dx

Possible Answers:

\displaystyle 2x^2

\displaystyle ln\ 4

\displaystyle ln\ 1

\displaystyle 3

\displaystyle ln\ 3

Correct answer:

\displaystyle ln\ 4

Explanation:

Unlike an indefinite integral, the definite integral must be evaluated at its limits, in this case, from 1 to 4.  First, we use our inverse power rule to find the antiderivative. So since \displaystyle x is to the power of \displaystyle -1, we have that \displaystyle \int x^{-1}=ln|x|.  Once you find the antiderivative, we must remember that  int_a^bf(z)dz=F(b)-F(a).  where \displaystyle F is the indefinite integral.  So, we plug in our limits and subtract the two.  So, we have \displaystyle ln(x)|_1^4=ln(4)-ln(1)=ln(4) because we know that \displaystyle ln\ 1=0.

Learning Tools by Varsity Tutors