All AP Calculus AB Resources
Example Questions
Example Question #43 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change
Remember the fundamental theorem of calculus!
As it turns out, since our , the power rule really doesn't help us. has a special anti derivative: .
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Example Question #44 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change
Remember the fundamental theorem of calculus!
As it turns out, since our , the power rule really doesn't help us. is the only function that is it's OWN anti-derivative. That means we're still going to be working with .
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Because is so small in comparison to the value we got for , our answer will end up being
Example Question #42 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change
What is the indefinite integral of ?
To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent. For this problem, that would look like:
Remember, when taking an integral, definite or indefinite, we always add , as there could be a constant involved.
Example Question #43 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change
What is the indefinite integral of ?
To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent. For this problem, that would look like:
Remember, when taking an integral, definite or indefinite, we always add , as there could be a constant involved.
Example Question #44 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change
What is the indefinite integral of ?
To solve for the indefinite integral, we can use the reverse power rule. We raise the power of the exponents by one and divide by that new exponent.
We're going to treat as , as anything to the zero power is one.
For this problem, that would look like:
Remember, when taking an integral, definite or indefinite, we always add , as there could be a constant involved.
Example Question #71 : Functions, Graphs, And Limits
Determine the indefinite integral:
Set . Then
.
and
The integral becomes:
Substitute back:
Example Question #1 : Finding Definite Integrals
Remember the fundamental theorem of calculus!
Since our , we can use the power rule for all of the terms involved to find our anti-derivative:
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Example Question #1 : Finding Integrals
Remember the fundamental theorem of calculus!
Since our , we can't use the power rule. We have to break up the quotient into separate parts:
.
The integral of 1 should be no problem, but the other half is a bit more tricky:
is really the same as . Since , .
Therefore:
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Example Question #5 : Integrals
Remember the fundamental theorem of calculus!
Since our , we can use the power rule, if we turn it into an exponent:
This means that:
Remember to include the for any anti-derivative or integral taken!
Now we can plug that equation into our FToC equation:
Notice that the c's cancel out. Plug in the given values for a and b and solve:
Example Question #71 : Asymptotic And Unbounded Behavior
What is the anti-derivative of ?
To find the indefinite integral of our expression, we can use the reverse power rule.
To use the reverse power rule, we raise the exponent of the by one and then divide by that new exponent.
First we need to realize that . From there we can solve:
When taking an integral, be sure to include a at the end of everything. stands for "constant". Since taking the derivative of a constant whole number will always equal , we include the to anticipate the possiblity of the equation actually being or instead of just .
Certified Tutor