AP Calculus AB : AP Calculus AB

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #43 : Functions, Graphs, And Limits

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

First, we know that we can pull the constant "4" out of the integral, and we then evaluate the integral according to this equation:

. From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #13 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

First, we know that the integral of a sum is the same as the sum of the integrals, so if needed, we can split the three integrals up and evaluate them seperately.  We then evaluate each integral according to this equation:

. From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #41 : Functions, Graphs, And Limits

Evalulate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

Normally, we would evalute the indefinite integral according to the following equation:

. However, in this case, .  Now we use our other rule that states the integral of  is equal to  plus a constant.  From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #41 : Functions, Graphs, And Limits

Evaluate the following indefinite integral.

Possible Answers:

 

Correct answer:

 

Explanation:

We evaluate the integral according to this equation:

. From this, we acquire the answer above. Keep in mind that  is the same as .  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #15 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

First, we remember that the integral of a sum is the same as the sum of the integrals, so we can split the sum into seperate integrals and solve them individually.  We then evaluate each integral according to this equation:

. From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #16 : Comparing Relative Magnitudes Of Functions And Their Rates Of Change

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

First, we know that we can pull the constant  out of the integral, and we then evaluate the integral according to this equation:

. From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #42 : Functions, Graphs, And Limits

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

First, we know that we can pull the constant  out of the integral, and we then evaluate the integral according to this equation:

. From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #43 : Functions, Graphs, And Limits

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

We evaluate the integral according to this equation:

. Keep in mind that  is the same as . From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #51 : Functions, Graphs, And Limits

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

We know that the derivative of  and the integral of .  We must remember the chain rule and therefore keep the 2 in the exponent. From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Example Question #52 : Functions, Graphs, And Limits

Evaluate the following indefinite integral.

Possible Answers:

Correct answer:

Explanation:

First, we know that we can pull the constant  out of the integral, and we then evaluate the integral according to this equation:

. From this, we acquire the answer above.  As a note, we cannot forget the constant of integration  which would be lost during the differentiation.

Learning Tools by Varsity Tutors