All AP Calculus AB Resources
Example Questions
Example Question #2 : Using The Chain Rule
Find the derivative of the following function:
Use -substitution so that .
Then the function becomes .
By the chain rule, .
We calculate each term using the power rule:
Plug in :
Example Question #1 : Finding Second Derivative Of A Function
Let .
Find the second derivative of .
The second derivative is just the derivative of the first derivative. So first we find the first derivative of . Remember the derivative of is , and the derivative for is .
Then to get the second derivative, we just derive this function again. So
Example Question #2 : Finding Second Derivative Of A Function
Define .
What is ?
Take the derivative of , then take the derivative of .
Example Question #54 : Calculus I — Derivatives
Define .
What is ?
Take the derivative of , then take the derivative of .
Example Question #55 : Calculus I — Derivatives
Define .
What is ?
Rewrite:
Take the derivative of , then take the derivative of .
Example Question #56 : Calculus I — Derivatives
What is the second derivative of ?
To get the second derivative, first we need to find the first derivative.
To do that, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.
Remember that anything to the zero power is one.
Now we do the same process again, but using as our expression:
Notice that , as anything times zero will be zero.
Anything to the zero power is one.
Example Question #57 : Calculus I — Derivatives
What is the second derivative of ?
Undefined
To get the second derivative, first we need to find the first derivative.
To do that, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.
We're going to treat as , as anything to the zero power is one.
That means this problem will look like this:
Notice that as anything times zero will be zero.
Remember, anything to the zero power is one.
Now to get the second derivative we repeat those steps, but instead of using , we use .
Notice that as anything times zero will be zero.
Example Question #58 : Calculus I — Derivatives
What is the second derivative of ?
To get the second derivative, first we need to find the first derivative.
To do that, we can use the power rule. That means we lower the exponent of the variable by one and multiply the variable by that original exponent.
We're going to treat as , as anything to the zero power is one.
Notice that , as anything times zero is zero.
Now we repeat the process using as the expression.
Just like before, we're going to treat as .
Example Question #51 : Derivatives
If , what is ?
The question is asking us for the second derivative of the equation. First, we need to find the first derivative.
To do that, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
Now we do the exact same process but using as our expression.
As stated earlier, anything to the zero power is one.
Example Question #52 : Derivatives
What is the second derivative of ?
Undefined
To find the second derivative, first we need to find the first derivative.
To do that, we can use the power rule. To use the power rule, we lower the exponent on the variable and multiply by that exponent.
We're going to treat as since anything to the zero power is one.
Notice that since anything times zero is zero.
That leaves us with .
Simplify.
As stated earlier, anything to the zero power is one, leaving us with:
Now we can repeat the process using or as our equation.
As pointed out before, anything times zero is zero, meaning that .
Certified Tutor
Certified Tutor