Algebra II : Mathematical Relationships and Basic Graphs

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4751 : Algebra Ii

Evaluate:  \displaystyle -2i^{5000}

Possible Answers:

\displaystyle -1

\displaystyle -2

\displaystyle -2-i

\displaystyle 2

\displaystyle 4i

Correct answer:

\displaystyle -2

Explanation:

Write the first few values of the imaginary term \displaystyle i.

\displaystyle i=\sqrt{-1}

\displaystyle i^2=i\cdot i = -1

\displaystyle i^4=i^2\cdot i^2 = (-1)\cdot (-1) =1

Rewrite the expression using the product of exponents.

\displaystyle -2i^{5000} = -2(i^4)^{1250}= -2(1)^{1250}

The value of one to this power will remain the same.

\displaystyle -2(1) =-2

The answer is:  \displaystyle -2

Example Question #2091 : Mathematical Relationships And Basic Graphs

Compute:  \displaystyle 2i^2+3i^4-4i^6-5i^2

Possible Answers:

\displaystyle 10

\displaystyle 8i

\displaystyle 5

\displaystyle -8

\displaystyle -10

Correct answer:

\displaystyle 10

Explanation:

To be able to evaluate the expression, we will need to write out the value of the imaginary terms.

Recall that:  \displaystyle i=\sqrt{-1}

\displaystyle i^2= -1

\displaystyle i^4 = i^2\cdot i^2 = (-1)\cdot (-1) =1

\displaystyle i^6 = i^4 \cdot i^2 = (1) \cdot (-1) = -1

Replace the terms.

\displaystyle 2i^2+3i^4-4i^6-5i^2= 2(-1)+3(1)-4(-1)-5(-1)

\displaystyle =-2+3+4+5 = 10

The answer is:  \displaystyle 10

Example Question #4751 : Algebra Ii

Evaluate:  \displaystyle (3+2i)^3

Possible Answers:

\displaystyle 54-9i

\displaystyle 54

\displaystyle 9-46i

\displaystyle 54i-9

\displaystyle 46i-9

Correct answer:

\displaystyle 46i-9

Explanation:

Rewrite the problem as separate groups of binomials.

\displaystyle (3+2i)^3=(3+2i)(3+2i)(3+2i)

Use the FOIL method to expand the first two terms.

\displaystyle (3+2i)(3+2i) = (3)(3)+(3)(2i)+(2i)(3)+(2i)(2i)

Simplify the right side.

\displaystyle 9+12i+4i^2

Recall that since \displaystyle i=\sqrt{-1}, the value of \displaystyle i^2 = i\cdot i =-1.

\displaystyle 9+12i+4(-1) = 12i+5

Multiply this value with the third binomial.

\displaystyle (12i+5)(3+2i) = (12i)(3)+(12i)(2i)+(5)(3)+(5)(2i)

Simplify the terms.

\displaystyle 36i+24i^2+15+10i=36i+24(-1)+15+10i = 46i-9

The answer is:  \displaystyle 46i-9

Example Question #4752 : Algebra Ii

Solve:  \displaystyle \frac{-2i^3}{i^{-7}}-i^2

Possible Answers:

\displaystyle -i

\displaystyle 3

\displaystyle -1

\displaystyle -2

Correct answer:

\displaystyle 3

Explanation:

In order to solve this expression, we will need to evaluate each term.

Use the property of exponents to subtract the powers in the fraction.

\displaystyle \frac{-2i^3}{i^{-7}} = -2i^{3-(-7)} = -2i^{10}

This term can be written as a fraction.

\displaystyle -2i^{-10} = -2\cdot \frac{1}{i^{10}}

Recall that the imaginary term \displaystyle i=\sqrt{-1}.  This means that:

\displaystyle i^2 = i\cdot i = -1

\displaystyle i^{10} = (i^2)^5 = (-1)^5 = -1

Replace the terms.

\displaystyle -2\cdot \frac{1}{i^{10}} = -2\cdot \frac{1}{-1} = 2

Solve the expression by replacing the values in the original expression.

\displaystyle \frac{-2i^3}{i^{-7}}-i^2 = 2-(-1) = 2+1 =3

The answer is:   \displaystyle 3

Example Question #2092 : Mathematical Relationships And Basic Graphs

Simplify:  \displaystyle -1000i^{52}+ 500i^{30}

Possible Answers:

\displaystyle -1500

\displaystyle -500i

\displaystyle -500

\displaystyle 1000+500i

\displaystyle 1000-500i

Correct answer:

\displaystyle -1500

Explanation:

Write the first few powers of the imaginary term.

\displaystyle i=\sqrt{-1}

\displaystyle i^2=i\cdot i = -1

\displaystyle i^3=i^2\cdot i = -i

\displaystyle i^4=i^2 \cdot i^2 = (-1)\cdot (-1) = 1

We can then rewrite the higher powered imaginary terms by the product of exponents.

\displaystyle -1000i^{52}+ 500i^{30} = -1000(i^4)^{13}+500(i^2)^{15}

Simplify the terms.

\displaystyle -1000(1)^{13}+500(-1)^{15} = -1000-500 = -1500

The answer is:  \displaystyle -1500

Example Question #2091 : Mathematical Relationships And Basic Graphs

Compute:  \displaystyle -5i^{1234}

Possible Answers:

\displaystyle 5

\displaystyle -5

\displaystyle -5-i

\displaystyle 5i

\displaystyle -5i

Correct answer:

\displaystyle 5

Explanation:

Identify the first two powers of the imaginary term.

\displaystyle i=\sqrt{-1}

\displaystyle i^2=i\cdot i =-1

Rewrite the expression as a product of exponents.

\displaystyle -5i^{1234}=-5(i^{2})^{617} = -5(-1)^{617}

Negative one to an odd power will be negative one.

\displaystyle -5(-1) =5

The answer is:  \displaystyle 5

Example Question #2091 : Mathematical Relationships And Basic Graphs

Evaluate:  \displaystyle 2i^{878}

Possible Answers:

\displaystyle -2

\displaystyle 2i

\displaystyle 2

\displaystyle -2i

Correct answer:

\displaystyle -2

Explanation:

Write the first few powers of the imaginary term.

\displaystyle i=\sqrt{-1}

\displaystyle i^2 = i\cdot i= -1

Change the higher ordered power by using the power rule of exponents.

\displaystyle 2i^{878} = 2(i^2)^{439}=2(-1)^{439}=2(-1)

A negative one to an odd power will be negative one.

The answer is:  \displaystyle -2

Example Question #72 : Basic Operations With Complex Numbers

Add \displaystyle 8 +2 i \sqrt{5} to its complex conjugate. What is the result?

Possible Answers:

\displaystyle 16

\displaystyle 0

\displaystyle -16

\displaystyle -4i \sqrt{5}

\displaystyle 4i \sqrt{5}

Correct answer:

\displaystyle 16

Explanation:

The complex conjugate of a complex number \displaystyle a+bi is \displaystyle a-bi

Therefore, the complex conjugate of \displaystyle 8 +2 i \sqrt{5} is \displaystyle 8 -2 i \sqrt{5}. Add the two:

\displaystyle \left (8 +2 i \sqrt{5} \right )+\left ( 8 -2 i \sqrt{5} \right )

Collect real parts and imaginary parts:

\displaystyle =8+ 8 +2 i \sqrt{5} -2 i \sqrt{5}

The imaginary parts cancel out:

\displaystyle =8+ 8

\displaystyle =16

Example Question #2091 : Mathematical Relationships And Basic Graphs

Select the complex conjugate of \displaystyle 9 - i \sqrt{5} .

Possible Answers:

\displaystyle \sqrt{5} + 9i

\displaystyle -9 +i \sqrt{5}

\displaystyle -9 - i \sqrt{5}

\displaystyle \sqrt{5} - 9i

\displaystyle 9 + i \sqrt{5}

Correct answer:

\displaystyle 9 + i \sqrt{5}

Explanation:

The complex conjugate of a complex number \displaystyle a-bi is \displaystyle a+bi, so the complex conjugate of \displaystyle 9 - i \sqrt{5} is \displaystyle 9 + i \sqrt{5}.

Example Question #81 : Basic Operations With Complex Numbers

Evaluate \displaystyle i ^{-34}.

Possible Answers:

\displaystyle i

\displaystyle 1

\displaystyle -1

\displaystyle -i

Correct answer:

\displaystyle -1

Explanation:

To raise \displaystyle i to the power of a negative integer, first raise \displaystyle i to the absolute value of that integer. Therefore, to find \displaystyle i ^{-34}, we need to look at \displaystyle i^{34}

To raise \displaystyle i to the power of any positive integer, divide the integer by 4 and note the remainder. The correct power is given according to the table below.

Powers of i

\displaystyle 34 \div 2 = 16 \textrm{ R }2, so \displaystyle i^{34} can be determined by selecting the power of \displaystyle i corresponding to remainder 2. This is \displaystyle -1

Since \displaystyle i^{34} = -1, and by definition, \displaystyle a^{-N} = \frac{1}{a^{N}}, it follows that 

\displaystyle i^{-34} = \frac{1}{i^{34} }= \frac{1}{-1} = -1.

Learning Tools by Varsity Tutors