All Algebra II Resources
Example Questions
Example Question #3 : Inverse Functions
What is ?
The question is essentially asking this: take say that equals , then take , then whatever that equals, say , take . So, we start with ; we know that , so if we flip that around we know . Now we have to take , but we know that is . Now we have to take , but we don't have that in our table; we do have , though, and if we flip it around, we get , which is our answer.
Example Question #4 : Inverse Functions
What is ?
Our question is asking "What is of of inverse?" First we find the inverse of . Looking at the question, we see ; if we flip that around, we get . Now we need to find what is; that is an easy one, as it is directly provided: . Now we need to find . Again, this isn't given, but what is given is , so , and that is our answer.
Example Question #5 : Inverse Functions
Over which line do you flip a function when finding its inverse?
You do not flip a function over a line when finding its inverse.
To find the inverse of a function, you need to change all of the values to values and all the values to values. If you flip a function over the line , then you are changing all the values to values and all the values to values, giving you the inverse of your function.
Example Question #6 : Inverse Functions
Find the inverse of this function:
To find the inverse of a function, we need to switch all the inputs ( variables) for all the outputs ( variables or variables), so if we just switch all the variables to variables and all the variables to variables and solve for , then will be our inverse function.
turns into the following once the variables are switched:
the first thing we do is subtract from each side; then, we take the natural log of each side. This gives us
Then we just add three to each side and take the square root of each side, making sure we have both the positive and negative roots.
This is the inverse function of the function with which we were provided.
Example Question #1 : Inverse Functions
Please find the inverse of the following function.
In order to find the inverse function, we must swap and and then solve for .
Becomes
Now we need to solve for :
Finally, we need to divide each side by 4.
This gives us our inverse function:
Example Question #1 : Inverse Functions
Find the inverse of .
To create the inverse, switch x and y making the solution x=3y+3.
y must be isolated to finish the problem.
Example Question #1 : Inverse Functions
Which one of the following functions represents the inverse of
A)
B)
C)
D)
E)
E)
B)
C)
A)
D)
C)
Given
Hence
Interchanging with we get:
Solving for results in .
Example Question #1 : Inverse Functions
What is the inverse of ?
Interchange the and variables and solve for .
Example Question #11 : Inverse Functions
Inverse Functions
Given the function below, find its inverse:
When finding the inverse go through the following steps:
1) Replace f(x) with y:
2) Swap the x and y variables
3) Solve for y:
add 5 to both sides
divide everything by 3
simplify and express as an inverse using
Example Question #201 : Functions And Graphs
Find the inverse of .
To find the inverse of a function, swap the x and y variable and solve for y.
The new expression after the swap is
Now solve for y.
This y actually represents the inverse of the original y.