Algebra II : Expressions

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #141 : Expressions

Solve the expression:  \displaystyle -6(x-6)^2-3x+2

Possible Answers:

\displaystyle -6x^2-69x+214

\displaystyle -6x^2+69x-216

\displaystyle -6x^2+69x-214

\displaystyle -6x^2+69x-218

\displaystyle -6x^2-75x+218

Correct answer:

\displaystyle -6x^2+69x-214

Explanation:

Evaluate the binomial squared first by order of operations.

\displaystyle (x-6)^2 = (x-6)(x-6)

\displaystyle = x(x)+(x)(-6)+(-6)(x)+(-6)(-6)

\displaystyle x^2-12x+36

The expression becomes:

\displaystyle -6(x^2-12x+36)-3x+2

Distribute the negative six through each term of the trinomial.

\displaystyle -6x^2+72x-216-3x+2

Combine like-terms.

The answer is:  \displaystyle -6x^2+69x-214

Example Question #2022 : Algebra Ii

Solve the expression if \displaystyle a=3:  \displaystyle 6a(a^2-a^3)

Possible Answers:

\displaystyle 648

\displaystyle -324

\displaystyle 324

\displaystyle -648

\displaystyle -162

Correct answer:

\displaystyle -324

Explanation:

Substitute the value of \displaystyle a into the given expression.

\displaystyle 6(3)((3)^2-(3)^3)

Simplify the parentheses by order of operations. 

\displaystyle 18(9-27) = 18(-18) = -324

The answer is:  \displaystyle -324

Example Question #2023 : Algebra Ii

If \displaystyle a=5 and \displaystyle b=6, evaluate:  \displaystyle \frac{1}{b}-\frac{b}{a}

Possible Answers:

\displaystyle -\frac{31}{30}

\displaystyle -\frac{19}{30}

\displaystyle -\frac{29}{30}

\displaystyle -\frac{41}{30}

\displaystyle -\frac{2}{5}

Correct answer:

\displaystyle -\frac{31}{30}

Explanation:

Substitute the assigned values into the expression.

\displaystyle \frac{1}{b}-\frac{b}{a} = \frac{1}{6}-\frac{6}{5}

Convert the fractions to a common denominator.

\displaystyle \frac{1}{6}-\frac{6}{5} = \frac{1(5)}{6(5)}-\frac{6(6)}{5(6)} = \frac{5}{30}- \frac{36}{30}

Now that the denominators are common, the numerators can be subtracted.

The answer is:  \displaystyle -\frac{31}{30}

Example Question #184 : Basic Single Variable Algebra

If \displaystyle a=4 and \displaystyle b=6, determine:  \displaystyle a(2-b)-a

Possible Answers:

\displaystyle -24

\displaystyle -18

\displaystyle -20

\displaystyle -12

\displaystyle -16

Correct answer:

\displaystyle -20

Explanation:

Substitute the values into the expression.

\displaystyle a(2-b)-a = 4(2-6)-4

Simplify the expression by distribution.

\displaystyle 4(2-6)-4 = 4(-4)-4 = -16-4 = -20

The answer is:  \displaystyle -20

Example Question #21 : Solving Expressions

If \displaystyle a=\sqrt5, b=\sqrt3, what is the value of \displaystyle \frac{15}{ab}?

Possible Answers:

\displaystyle \frac{\sqrt{15}}{15}

\displaystyle \sqrt{30}

\displaystyle \sqrt{15}

\displaystyle \frac{\sqrt{15}}{2}

\displaystyle 2\sqrt{15}

Correct answer:

\displaystyle \sqrt{15}

Explanation:

Substitute the values of \displaystyle a and \displaystyle b.

\displaystyle \frac{15}{\sqrt{5}\cdot \sqrt{3}} = \frac{15}{\sqrt{15}}

Rationalize the denominator by multiplying the top and bottom with the denominator.  This will eliminate the radical in the denominator.

\displaystyle \frac{15}{\sqrt{15}}\cdot \frac{\sqrt{15}}{\sqrt{15}}=\frac{15\sqrt{15}}{15}

Cancel the integers.

The answer is:  \displaystyle \sqrt{15}

Example Question #21 : Solving Expressions

Solve the expression:  \displaystyle 3a^2-9b^3 if \displaystyle a=6 and \displaystyle b=2

Possible Answers:

\displaystyle 108

\displaystyle 72

\displaystyle 36

\displaystyle 54

\displaystyle 24

Correct answer:

\displaystyle 36

Explanation:

In order to solve this expression, we will need to substitute the assigned values into \displaystyle a and \displaystyle b.

\displaystyle 3a^2-9b^3 = 3(6)^2-9(2)^3

Simplify the terms by order of operation.

\displaystyle 3(6)^2-9(2)^3 = 3(36)-9(8) = 108-72=36

The answer is:  \displaystyle 36

Example Question #191 : Basic Single Variable Algebra

If \displaystyle a=5 and \displaystyle b =-3, what is \displaystyle 2a^2-4b^3?

Possible Answers:

\displaystyle 158

\displaystyle -42

\displaystyle -58

\displaystyle 42

\displaystyle -158

Correct answer:

\displaystyle 158

Explanation:

Substitute the values into the expression.

\displaystyle 2a^2-4b^3 = 2(5)^2-4(-3)^3

Simplify the terms by order of operations.

\displaystyle 2(5)^2-4(-3)^3 = 2(25) - 4(-27)

\displaystyle =50 + 108=158

The answer is:  \displaystyle 158

Example Question #191 : Basic Single Variable Algebra

If \displaystyle a=6 and \displaystyle b=-6, what is the value of \displaystyle -a^{-2}-b^{-2}?

Possible Answers:

\displaystyle -\frac{1}{36}

\displaystyle 0

\displaystyle 1

\displaystyle -\frac{1}{18}

\displaystyle -\frac{1}{72}

Correct answer:

\displaystyle -\frac{1}{18}

Explanation:

Substitute the values into the expression.

\displaystyle -(6)^{-2}-(-6)^{-2}

In order to evaluate this expression, we will need to rewrite the negative exponents into fractions.

\displaystyle -(6)^{-2}-(-6)^{-2}= -\frac{1}{6^2}-\frac{1}{(-6)^2}

Simplify the fractions.

\displaystyle -\frac{1}{36}-\frac{1}{36} =- \frac{2}{36}

Reduce this fraction.  

The answer is:  \displaystyle -\frac{1}{18}

Example Question #141 : Expressions

If \displaystyle a=3 and \displaystyle b=2, what is the value of \displaystyle \frac{b}{\sqrt a}?

Possible Answers:

\displaystyle \frac{3\sqrt{3}}{2}

\displaystyle \frac{2\sqrt{3}}{3}

\displaystyle 3\sqrt2

\displaystyle \frac{3\sqrt{2}}{2}

\displaystyle \textup{The answer is not given.}

Correct answer:

\displaystyle \frac{2\sqrt{3}}{3}

Explanation:

Substitute the values in the expression.

\displaystyle \frac{b}{\sqrt a} = \frac{2}{\sqrt 3}

Rationalize the denominator by multiplying square root of three on the top and bottom of the fraction.

\displaystyle \frac{2}{\sqrt 3}\cdot \frac{\sqrt 3}{\sqrt 3}

Simplify the top and bottom.

The answer is:  \displaystyle \frac{2\sqrt{3}}{3}

Learning Tools by Varsity Tutors