Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #72 : Imaginary Numbers

Divide: \(\displaystyle \frac{2+3i}{i}\)

Answer must be in standard form.

Possible Answers:

\(\displaystyle 13\)

\(\displaystyle 3+2i\)

\(\displaystyle 2i-3\)

\(\displaystyle 5\)

\(\displaystyle 3-2i\)

Correct answer:

\(\displaystyle 3-2i\)

Explanation:

Multiply both the numerator and the denominator by the conjugate of the denominator which is \(\displaystyle -i\) resulting in

\(\displaystyle \frac{\left ( 2+3i \right )\left ( -i \right )}{\left ( i \right )\left ( -i \right )}\)

This is equal to \(\displaystyle \frac{-2i-{3i}^2}{-i^2}\)

Since \(\displaystyle i^2 = -1\) you can make that substitution of \(\displaystyle -1\) in place of \(\displaystyle i^2\) in both numerator and denominator, leaving:

 

\(\displaystyle \frac{-2i-3(-1)}{-(-1)}\)

When you then cancel the negatives in both numerator and denominator (remember that \(\displaystyle -(-1)=1\), simplifying each term), you're left with a denominator of \(\displaystyle 1\) and a numerator of \(\displaystyle -2i + 3\), which equals \(\displaystyle 3-2i\).

Example Question #4691 : Algebra Ii

Evaluate:  \(\displaystyle i(1+i)(2-i)\)

Possible Answers:

\(\displaystyle 1-3i\)

\(\displaystyle -3+i\)

\(\displaystyle 1+3 i\)

\(\displaystyle -1-3i\)

\(\displaystyle -1+3i\)

Correct answer:

\(\displaystyle -1+3i\)

Explanation:

Use the FOIL method to simplify. FOIL means to mulitply the first terms together, then multiply the outer terms together, then multiply the inner terms togethers, and lastly, mulitply the last terms together.

\(\displaystyle i(1+i)(2-i)\)

\(\displaystyle =i[(1)(2)+(1)(-i)+(i)(2)+(i)(-i)]\)

\(\displaystyle =i[2-i+2i-i^2]\)

\(\displaystyle =i[2+i-i^2]\)

\(\displaystyle =2i+i^2-i^3\)

The imaginary \(\displaystyle i\) is equal to:

\(\displaystyle \sqrt{-1}\)

Write the terms for \(\displaystyle i, i^2, \textup{and } i^3\).

\(\displaystyle i=\sqrt{-1}\)

\(\displaystyle i^2=-1\)

\(\displaystyle i^3=i \times i^2=-\sqrt{-1}=-i\)

Replace \(\displaystyle i^2 \textup{ and } i^3\) with the appropiate values and simplify.

\(\displaystyle 2i+i^2-i^3= 2i-1-(-i) = -1+3i\)

Example Question #73 : Imaginary Numbers

What is the value of \(\displaystyle i^{42}\), if \(\displaystyle \small i\)=\(\displaystyle \small \sqrt{-1}\) ?

 

 

Possible Answers:

\(\displaystyle \textup{No solution}\)

\(\displaystyle -1\)

\(\displaystyle 1\)

\(\displaystyle \small i\)

\(\displaystyle \small -i\)

Correct answer:

\(\displaystyle -1\)

Explanation:

We know that \(\displaystyle \small i=\sqrt{-1}}\). Therefore, \(\displaystyle \small i^{2}=-1, i^{3}=-\sqrt{-1}, i^{4}=1\). Thus, every exponent of \(\displaystyle \small i\) that is a multiple of 4 will yield the value of \(\displaystyle \small 1\). This makes \(\displaystyle \small i^{40} =1\). Since \(\displaystyle \small i^{42}=i^{40}*i*i\), we know that \(\displaystyle \small i^{42}=1*i*i=i^{2}=-1\).

Example Question #4 : Complex Numbers

\(\displaystyle (3+2i)+4-i-i(7+i)\)

Possible Answers:

The answer is not present.

\(\displaystyle 7(1-i)\)

\(\displaystyle 8-6i\)

\(\displaystyle 7-6i\)

\(\displaystyle -i\)

Correct answer:

\(\displaystyle 8-6i\)

Explanation:

\(\displaystyle (3+2i)+4-i-i(7+i)\)

Combine like terms:

\(\displaystyle 7+i-i(7+i)\)

Distribute:

\(\displaystyle 7+i-7i-i^2\)

Combine like terms:

\(\displaystyle 7+i-7i-(-1)\)

\(\displaystyle \mathbf{8-6i}\)

Example Question #2031 : Mathematical Relationships And Basic Graphs

\(\displaystyle \sqrt{-4}*\sqrt{-25}*\sqrt{-64}\)

Possible Answers:

\(\displaystyle 80i\)

\(\displaystyle -80i\)

\(\displaystyle 8i\)

\(\displaystyle -8i\)

\(\displaystyle 80i^3\)

Correct answer:

\(\displaystyle -80i\)

Explanation:

\(\displaystyle \sqrt{-4}*\sqrt{-25}*\sqrt{-64}\)

\(\displaystyle 2i*5i*8i=80i^3\)

\(\displaystyle i^3=-1\)

\(\displaystyle \mathbf{-80i}\)

Example Question #73 : Imaginary Numbers

Rationalize the complex fraction: \(\displaystyle \frac{2+i}{3-i}\)

Possible Answers:

\(\displaystyle \frac{1-i}{2}\)

\(\displaystyle \frac{5+i}{10}\)

\(\displaystyle \frac{5+5i}{8}\)

\(\displaystyle \frac{1+i}{2}\)

\(\displaystyle \frac{7+5i}{10}\)

Correct answer:

\(\displaystyle \frac{1+i}{2}\)

Explanation:

To rationalize a complex fraction, multiply numerator and denominator by the conjugate of the denominator.

\(\displaystyle \frac{(2+i)(3+i)}{(3-i)(3+i)}\)

\(\displaystyle \frac{6+3i+2i+i^2}{9-3i+3i-i^2}\)

\(\displaystyle \frac{5+5i}{10}\)

\(\displaystyle \frac{1+i}{2}\)

Example Question #73 : Imaginary Numbers

Rationalize the complex fraction: \(\displaystyle \frac{2+i}{3-i}\)

Possible Answers:

\(\displaystyle \frac{1-i}{2}\)

\(\displaystyle \frac{5+i}{10}\)

\(\displaystyle \frac{5+5i}{8}\)

\(\displaystyle \frac{1+i}{2}\)

\(\displaystyle \frac{7+5i}{10}\)

Correct answer:

\(\displaystyle \frac{1+i}{2}\)

Explanation:

To rationalize a complex fraction, multiply numerator and denominator by the conjugate of the denominator.

\(\displaystyle \frac{(2+i)(3+i)}{(3-i)(3+i)}\)

\(\displaystyle \frac{6+3i+2i+i^2}{9-3i+3i-i^2}\)

\(\displaystyle \frac{5+5i}{10}\)

\(\displaystyle \frac{1+i}{2}\)

Example Question #71 : Imaginary Numbers

Multiply: \(\displaystyle (3i + 1 )(3 - 4i)\)

Possible Answers:

\(\displaystyle 5i+15\)

\(\displaystyle 3-7i\)

\(\displaystyle 5i-9\)

\(\displaystyle 2 - 12i\)

Correct answer:

\(\displaystyle 5i+15\)

Explanation:

Distribute:

\(\displaystyle 3i(3-4i) = 9i + 12\)

\(\displaystyle 1(3-4i) = 3 - 4i\)

combine like terms:

\(\displaystyle 5i + 15\)

 

Example Question #4692 : Algebra Ii

Multiply: \(\displaystyle (3+i)(5-4i)\)

Possible Answers:

\(\displaystyle 19+17i\)

\(\displaystyle 15-11i\)

\(\displaystyle 11-7i\)

\(\displaystyle 19-7i\)

\(\displaystyle 15-3i\)

Correct answer:

\(\displaystyle 19-7i\)

Explanation:

Use FOIL to multiply the two binomials.

Recall that FOIL stands for Firsts, Outers, Inners, and Lasts.

\(\displaystyle (3+i)(5-4i)\)

\(\displaystyle 15+5i-12i-4i^2\)

Remember that \(\displaystyle i^2=-1\)

\(\displaystyle 15-7i+4\)

\(\displaystyle 19-7i\)

Example Question #4693 : Algebra Ii

Simplify: \(\displaystyle (5-3i)-(2+2i)\)

Possible Answers:

\(\displaystyle 7+i\)

\(\displaystyle 8\)

\(\displaystyle 3-5i\)

\(\displaystyle 3-i\)

\(\displaystyle 7-i\)

Correct answer:

\(\displaystyle 3-5i\)

Explanation:

Distribute the minus sign:

\(\displaystyle 5-3i-2-2i\)

Combine like terms:

\(\displaystyle 3-5i\)

Learning Tools by Varsity Tutors