Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #92 : Solving Equations

Solve for \displaystyle x.

\displaystyle 4(x-12)=96

Possible Answers:

\displaystyle 24

\displaystyle 34

\displaystyle 28

\displaystyle 48

\displaystyle 36

Correct answer:

\displaystyle 36

Explanation:

There are TWO ways:

Method \displaystyle 1:

\displaystyle 4(x-12)=96 Distribute the \displaystyle 4.

\displaystyle 4x-48=96 Add \displaystyle 48 on both sides.

\displaystyle 4x=144 Divide \displaystyle 4 on both sides.

\displaystyle x=36

 

Method \displaystyle 2:

\displaystyle 4(x-12)=96 Divide \displaystyle 4 on both sides.

\displaystyle x-12=24 Add \displaystyle 12 on both sides.

\displaystyle x=36

Example Question #581 : Basic Single Variable Algebra

Solve for \displaystyle x.

\displaystyle \frac{2}{3}(x+3)=24

Possible Answers:

\displaystyle 30

\displaystyle 33

\displaystyle 39

\displaystyle 42

\displaystyle 36

Correct answer:

\displaystyle 33

Explanation:

There are TWO ways:

Method \displaystyle 1: (not so preferred)

\displaystyle \frac{2}{3}(x+3)=24 Distribute \displaystyle \frac{2}{3}.

\displaystyle \frac{2x}{3}+2=24 Subtract \displaystyle 2 on both sides.

\displaystyle \frac{2x}{3}=22 Multiply \displaystyle \frac{3}{2} on both sides.

\displaystyle x=33

 

Method \displaystyle 2: (preferred)

\displaystyle \frac{2}{3}(x+3)=24 Multiply \displaystyle \frac{3}{2} on both sides.

\displaystyle x+3=36 Subtract \displaystyle 3 on both sides.

\displaystyle x=33

Example Question #101 : Solving Equations

Solve for \displaystyle x.

\displaystyle \frac{2}{3}=\frac{x}{12}

Possible Answers:

\displaystyle 12

\displaystyle 8

\displaystyle 4

\displaystyle 6

\displaystyle 24

Correct answer:

\displaystyle 8

Explanation:

\displaystyle \frac{2}{3}=\frac{x}{12} Cross-multiply.

\displaystyle 3x=24 Divide \displaystyle 3 on both sides.

\displaystyle x=8

Example Question #101 : Solving Equations

Solve for \displaystyle x.

\displaystyle \frac{4}{x+12}=\frac{10}{85}

Possible Answers:

\displaystyle 22

\displaystyle 32.8

\displaystyle 35.2

\displaystyle 24.8

\displaystyle 34

Correct answer:

\displaystyle 22

Explanation:

\displaystyle \frac{4}{x+12}=\frac{10}{85} Cross-multiply. Remember the \displaystyle 10 multiplies the whole expression.

\displaystyle 10(x+12)=4*85 Distribute.

\displaystyle 10x+120=340 Subtract \displaystyle 120 on both sides.

\displaystyle 10x=220 Divide \displaystyle 10 on both sides.

\displaystyle x=22

Example Question #104 : Solving Equations

Solve

\displaystyle 2x+5=7

Possible Answers:

\displaystyle x=4

\displaystyle x=-1

\displaystyle x=2

\displaystyle x=6

\displaystyle x=1

Correct answer:

\displaystyle x=1

Explanation:

Solve \displaystyle 2x+5=7 by:

The objective is to solve the equation to find what \displaystyle x is equal to, so we need to have \displaystyle x= a value.

First subtract 5 from both sides , and we will get:

\displaystyle 2x=2

Divide both sides by 2 and the solution is:

\displaystyle x=1

Example Question #2421 : Algebra Ii

Solve:

\displaystyle 4x+18=2x-4

Possible Answers:

\displaystyle x=11

\displaystyle x=-11

\displaystyle x=-12

\displaystyle x=10

\displaystyle x=-7

Correct answer:

\displaystyle x=-11

Explanation:

The objective is to solve the equation to find what \displaystyle x is equal to, so we need to have \displaystyle x= a value.

\displaystyle 4x+18=2x-4

1. Subtract \displaystyle 2x from both sides, and we will have:

\displaystyle 2x+18=-4

 

2. Subtract 18 from both sides, and we will have:

\displaystyle 2x=-22

 

3. Divide both sides of the equation by 2 and the solution is:

\displaystyle x=-11

Example Question #2421 : Algebra Ii

Solve:

\displaystyle 5x + 14 -2(x+4)=x+3(x+1)-(x-3)

Possible Answers:

\displaystyle x=1

None of the above

All real numbers

\displaystyle x=22

No solution

Correct answer:

All real numbers

Explanation:

To solve:

\displaystyle 5x + 14 -2(x+4)=x+3(x+1)-(x-3)

1. First clear the parentheses.

\displaystyle 5x + 14 -2x-8=x+3x+3-x+3

2. Add the variables.

\displaystyle 3x+ 14-8=3x+3+3

3. Add the integers.

\displaystyle 3x+ 6=3x+6

4. Subtract \displaystyle 3x from each side.

\displaystyle 6=6

Which is always true, so x can be all real numbers.

Example Question #2422 : Algebra Ii

Solve the following equation:

\displaystyle \small x^2+64=-36

Possible Answers:

\displaystyle \small x=10, x=-10

\displaystyle \small x= 0

\displaystyle \small x=-10

\displaystyle \small x=10

No solution

Correct answer:

No solution

Explanation:

To simplify this you need to isolate x by subtracting 64 from both sides then taking the square root to get:

\displaystyle \small \sqrt{-100}

you cannot take the square root of a negative number so you answer is no solution.

Example Question #582 : Basic Single Variable Algebra

Solve the following equation:

\displaystyle \small -12x+36=96

Possible Answers:

\displaystyle \small x=5

\displaystyle \small x=-5

\displaystyle \small x=-12

\displaystyle \small x=-6

\displaystyle \small x=6

Correct answer:

\displaystyle \small x=-5

Explanation:

This is a simple two step problem in which you need to isolate "x" The first step is to subtract the 36 from both sides. Upon doing this you get:

\displaystyle \small -12x=60

The next step is to divide by -12 to get "x" by itself.

Your final answer is:

\displaystyle \small x=-5

Example Question #584 : Basic Single Variable Algebra

Solve the following equation for \displaystyle x

\displaystyle 3x - 2 = \frac{x}{4}

 

 

 

Possible Answers:

\displaystyle x = 3

\displaystyle x = -\frac{2}{11}

\displaystyle x = \frac{8}{11}

\displaystyle x = \frac{2}{11}

\displaystyle x =- \frac{11}{8}

Correct answer:

\displaystyle x = \frac{8}{11}

Explanation:

\displaystyle 3x - 2 = \frac{x}{4}

We can start by multiplying both sides by the denominator \displaystyle 4

\displaystyle 4\times (3x-2)=4\times \frac{x}{4}

 

\displaystyle 12x - 8 = x

Isolate terms with \displaystyle x on one side of the equation, 

\displaystyle 12x -x = 8

 

Collect terms and solve, 

\displaystyle 11x = 8

 

\displaystyle x = \frac{8}{11}

Learning Tools by Varsity Tutors