Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #139 : Solving Equations

Solve for \displaystyle x.

\displaystyle \frac{7}{9}x=756

Possible Answers:

\displaystyle 612

\displaystyle 588

\displaystyle 972

\displaystyle 963

\displaystyle 558

Correct answer:

\displaystyle 972

Explanation:

To solve for the variable perform opposite operations to isolate it on one side of the equation with all constants on the other side.

\displaystyle \frac{7}{9}x=756 

Multiply \displaystyle \frac{9}{7} on both sides.

\displaystyle x=972

Example Question #621 : Basic Single Variable Algebra

Solve for \displaystyle x.

\displaystyle -2x=1046

Possible Answers:

\displaystyle 662

\displaystyle -533

\displaystyle -523

\displaystyle 481

\displaystyle 543

Correct answer:

\displaystyle -523

Explanation:

To solve for the variable perform opposite operations to isolate it on one side of the equation with all constants on the other side.

\displaystyle -2x=1046 

Divide \displaystyle -2 on both sides.

\displaystyle x=-523

Example Question #271 : Equations

Solve for \displaystyle x.

\displaystyle -73x=-1314

Possible Answers:

\displaystyle 24

\displaystyle -26

\displaystyle 18

\displaystyle 14

\displaystyle -28

Correct answer:

\displaystyle 18

Explanation:

To solve for the variable perform opposite operations to isolate it on one side of the equation with all constants on the other side.

\displaystyle -73x=-1314 

Divide \displaystyle -73 on both sides.

\displaystyle x=18

Example Question #2 : Solve Linear Equations With Rational Number Coefficients: Ccss.Math.Content.8.Ee.C.7b

Solve for \displaystyle x:

\displaystyle 8(x+5)=16

Possible Answers:

\displaystyle -\frac{11}{8}

\displaystyle \frac{11}{8}

\displaystyle -3

None of the other answers

\displaystyle 3

Correct answer:

\displaystyle -3

Explanation:

First, you must multiply the left side of the equation using the distributive property.

This gives you \displaystyle 8x+40=16.

Next, subtract \displaystyle 40 from both sides to get \displaystyle 8x=-24.

Then, divide both sides by \displaystyle 8 to get \displaystyle x=-3.

Example Question #273 : Equations

Solve for \displaystyle x.

\displaystyle x+88.45=37.91

Possible Answers:

\displaystyle 68.44

\displaystyle -50.54

\displaystyle -46.92

\displaystyle 24.65

\displaystyle 32.66

Correct answer:

\displaystyle -50.54

Explanation:

In order to solve for \displaystyle x, we need to isolate the variable on the left side of the equation. We will do this by performing the same operations on both sides of the equation.

\displaystyle x+88.45=37.91 

Subtract \displaystyle 88.45 from both sides of the equation.

\displaystyle x+88.45-88.45=37.91-88.45

Solve.

\displaystyle x=-50.54

Example Question #271 : Equations

Solve for \displaystyle x.

\displaystyle x+445.78=-235.1

Possible Answers:

\displaystyle -680.88

\displaystyle -598.62

\displaystyle 726.66

\displaystyle 968.52

\displaystyle 482.10

Correct answer:

\displaystyle -680.88

Explanation:

In order to solve for \displaystyle x, we need to isolate the variable on the left side of the equation. We will do this by performing the same operations on both sides of the equation.

\displaystyle x+445.78=-235.1 

Subtract \displaystyle 445.78 from both sides of the equation.

\displaystyle x+445.78-445.78=-235.1-445.78

Solve.

\displaystyle x=-680.88

Example Question #145 : Solving Equations

Solve for \displaystyle x.

\displaystyle x-234.67=98.54

Possible Answers:

\displaystyle 333.21

\displaystyle 485.11

\displaystyle -149.56

\displaystyle -201.89

\displaystyle -136.13

Correct answer:

\displaystyle 333.21

Explanation:

In order to solve for \displaystyle x, we need to isolate the variable on the left side of the equation. We will do this by performing the same operations on both sides of the equation.

\displaystyle x-234.67=98.54 

Add \displaystyle 234.67 to both sides of the equation.

\displaystyle x-234.67+234.67=98.54+234.67

Solve.

\displaystyle x=333.21

Example Question #273 : Equations

Solve for \displaystyle x.

\displaystyle x-834.92=-1083.5

Possible Answers:

\displaystyle -238.41

\displaystyle 349.32

\displaystyle 368.64

\displaystyle 128.44

\displaystyle -248.58

Correct answer:

\displaystyle -248.58

Explanation:

In order to solve for \displaystyle x, we need to isolate the variable on the left side of the equation. We will do this by performing the same operations on both sides of the equation.

\displaystyle x-834.92=-1083.5 

Add \displaystyle 834.92 to both sides of the equation.

\displaystyle x-834.92+834.92=-1083.5+834.92

Solve.

\displaystyle x=-248.58

Example Question #623 : Basic Single Variable Algebra

Solve for \displaystyle x.

\displaystyle x-468.94=-268.98

Possible Answers:

\displaystyle 148.26

\displaystyle -280.22

\displaystyle -265.48

\displaystyle 199.96

\displaystyle -368.44

Correct answer:

\displaystyle 199.96

Explanation:

In order to solve for \displaystyle x, we need to isolate the variable on the left side of the equation. We will do this by performing the same operations on both sides of the equation.

\displaystyle x-468.94=-268.98 

Add \displaystyle 468.94 to both sides of the equation.

\displaystyle x-468.94+468.94=-268.98+468.94

Solve.

\displaystyle x=199.96

Example Question #2461 : Algebra Ii

Solve for \displaystyle x.

\displaystyle x+91.92=132.7

Possible Answers:

\displaystyle -78.65

\displaystyle -69.45

\displaystyle 40.78

\displaystyle 39.45

\displaystyle -88.48

Correct answer:

\displaystyle 40.78

Explanation:

In order to solve for \displaystyle x, we need to isolate the variable on the left side of the equation. We will do this by performing the same operations on both sides of the equation.

\displaystyle x+91.92=132.7 

Subtract \displaystyle 91.92 from both sides of the equation.

\displaystyle x+91.92-91.92=132.7-91.92

Solve.

\displaystyle x=40.78

Learning Tools by Varsity Tutors