Algebra II : Algebra II

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Hyperbolic Functions

Express the following hyperbolic function in standard form:

Possible Answers:

Correct answer:

Explanation:

In order to express the given hyperbolic function in standard form, we must write it in one of the following two ways:

From our formulas for the standard form of a hyperbolic equation above, we can see that the term on the right side of the equation is always 1, so we must divide both sides of the given equation by 52, which gives us:

Simplifying, we obtain our final answer in standard form:

Example Question #1021 : Algebra Ii

Which of the following answers best represent ?

Possible Answers:

Correct answer:

Explanation:

The correct definition of hyperbolic sine is:

Therefore, by multiplying 2 by both sides we get the following answer,

 

Example Question #5 : Hyperbolic Functions

Which of the following best represents , if the value of  is zero?

Possible Answers:

Correct answer:

Explanation:

Find the values of hyperbolic sine and cosine when x is zero.  According to the properties:

Therefore:

Example Question #6 : Hyperbolic Functions

What is the value of ?

Possible Answers:

Correct answer:

Explanation:

The hyperbolic tangent will need to be rewritten in terms of hyperbolic sine and cosine.

According to the properties:

Therefore:

Example Question #7 : Hyperbolic Functions

Simplify:  

Possible Answers:

Correct answer:

Explanation:

The following is a property of hyperbolics that is closely similar to the problem.

We will need to rewrite this equation by taking a negative one as the common factor, and divide the negative one on both sides. 

Substitute the value into the problem.

 

 

Example Question #8 : Hyperbolic Functions

Which of the following is the correct expression for a hyperbola that is shifted   units up and   to the right of ?

Possible Answers:

Correct answer:

Explanation:

The parent function of a hyperbola is represented by the function  where  is the center of the hyperbola. To shift the original function up by   simply add . To shift it to the right   take away .

Example Question #9 : Hyperbolic Functions

Find the foci of the hyperbola:  

Possible Answers:

Correct answer:

Explanation:

Write the standard forms for a hyperbola.

OR:

The standard form is given in the second case, which will have different parameters compared to the first form.

Center:  

Foci:  , where 

Identify the coefficients  and substitute to find the value of .

The answer is:  

Example Question #10 : Hyperbolic Functions

Given the hyperbola , what is the  value of the center?

Possible Answers:

Correct answer:

Explanation:

In order to determine the center, we will first need to rewrite this equation in standard form.  

Isolate 41 on the right side.  Subtract  and add  on both sides.

The equation becomes:

Group the x and y terms.  Be careful of the negative signs.

Pull out a common factor of 4 on the second parentheses.

Complete the square twice.  Divide the second term of each parentheses by two and square the quantity.  Add the terms on both sides.

This equation becomes:

Factorize the left side and simplify the right.

Divide both sides by nine.

The equation is now in the standard form of a hyperbola.

The center is at:  

The answer is:  

Example Question #11 : Hyperbolic Functions

Which of the following shapes does the graph of the equation  take?

Possible Answers:

Circle

Parabola

Ellipse

Hyperbola

Correct answer:

Ellipse

Explanation:

The equation for a horizontal hyperbola is . The equation for a vertical hyperbola is . Both include x- and y-terms combined using subtraction. The equation for an ellipse is . Because the given equation connects the x- and y-terms using addition rather than subtraction, it represents an ellipse rather than a hyperbola. If the equation took the form , it would represent a circle. If the equation took the form , it would represent a parabola.

 

 

Example Question #501 : Functions And Graphs

Which of the following shapes does the graph of the equation  take? 

Possible Answers:

Ellipse

Hyperbola

Circle

Parabola

Correct answer:

Hyperbola

Explanation:

The equation for a horizontal hyperbola is . The equation for a vertical hyperbola is . Both include x- and y-terms combined using subtraction. If the equation took the form  (using addition rather than subtraction to combine the x- and y-terms), it would represent an ellipse. If the equation took the form , it would represent a circle. If the equation took the form , it would represent a parabola.

 

 

Learning Tools by Varsity Tutors