Advanced Geometry : Coordinate Geometry

Study concepts, example questions & explanations for Advanced Geometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #166 : Coordinate Geometry

Which of the following is the equation of the line of symmetry of a horizontal parabola on the coordinate plane with its vertex at \displaystyle (8,4) ?

Possible Answers:

\displaystyle x= 8

\displaystyle x-2y = 0

\displaystyle x+y = 12

\displaystyle x-y = 4

\displaystyle y = 4

Correct answer:

\displaystyle y = 4

Explanation:

The line of symmetry of a horizontal parabola is a horizontal line, the equation of which takes the form \displaystyle y = b for some \displaystyle b. The line of symmetry passes through the vertex, which here is \displaystyle (8,4), so the equation must be \displaystyle y = 4.

Example Question #21 : Graphing

The graphs of the functions \displaystyle f(x) and \displaystyle g(x) have the same \displaystyle y-intercept.

If we define \displaystyle f(x) = 2x^{2}+ 4x+7, which of the following is a possible definition of \displaystyle g(x) ?

Possible Answers:

\displaystyle g(x) = 6x^{2}+ 3x-7

\displaystyle g(x) = x^{2}+ 2x+6

\displaystyle g(x) =4x^{2}+ 16x+14

\displaystyle g(x) = 4x^{2}+ 8x+7

\displaystyle g(x) = -2x^{2}- 4x-14

Correct answer:

\displaystyle g(x) = 4x^{2}+ 8x+7

Explanation:

The \displaystyle y-coordinate of the \displaystyle y-intercept of the graph of a function of the form \displaystyle f(x)= Ax^{2}+Bx+C - a quadratic function - is the point \displaystyle (0, f(0)). Since \displaystyle f(x)= A \cdot 0^{2}+B \cdot 0 +C = C, the \displaystyle y-intercept is at the point \displaystyle (0,C).

Because of this, the graph of \displaystyle f(x) = 2x^{2}+ 4x+7 has its \displaystyle y-intercept at \displaystyle (0,7). Among the other choices, only \displaystyle g(x) = 4x^{2}+ 8x+7 has a graph with its \displaystyle y-intercept also at \displaystyle (0,7).

Example Question #71 : Coordinate Geometry

Find the vertex and determine if the vertex is a maximum or minimum for \displaystyle f(x) below. 

\displaystyle f(x)=-x^{2}+2x-8  

Possible Answers:

\displaystyle Vertex: (1,-5), Max

\displaystyle Vertex: (1,-7), Min

\displaystyle Vertex: (1,-7), Max

\displaystyle Vertex: (1,-5), Min

Correct answer:

\displaystyle Vertex: (1,-7), Max

Explanation:

The correct answer for the vertex is found by first finding the x of the vertex: 

\displaystyle x=\frac{-b}{2a}\ where\ a=-1\ and\ b=2

Plug in a and b to get: 

\displaystyle x=\frac{-2}{2(-1)}=\boldsymbol{\mathit{}1}

To find the y value of the vertex, plug in what was found for x above in the original f(x). 

\displaystyle f(x)=-x^{2}+2x-8\ plug\ in\ x=1

\displaystyle f(1)=-(1)^{2}+2(1)-8=\boldsymbol{\mathit{}-7}

a common mistake here is the order of operations, at the beginning the 1 is squared before it is multipled by the negative out front. 

\displaystyle The\ vertex\ is\ \boldsymbol{\mathbf{\mathit{}}(1,-7)}

Now we must consider if the vertex is a MAX or a MIN

Since the a value is negative, this means the parabola will open down, which means the vertex is the highest point on the graph. 

\displaystyle The\ vertex\ is\ the\ \boldsymbol{MAX}

 

Example Question #161 : Advanced Geometry

What is the range for \displaystyle f(x) below? 

\displaystyle f(x)=-3(x-5)^{2}+7

Possible Answers:

\displaystyle y\geq 7

\displaystyle y\leq7

\displaystyle y\leq5

\displaystyle y\geq 5

Correct answer:

\displaystyle y\leq7

Explanation:

\displaystyle The\ -3\ at\ the\ beginning\ of\ the\ function\ determines\ if\ the\ graph\ opens\ up\ or\ down.

\displaystyle The\ parabola\ will\ open\ up\ if\ this\ value\ is\ positive.

\displaystyle The\ parabola\ will\ open\ down\ if\ this\ value\ is\ negative.

\displaystyle This\ parabola\ opens\ down\ which\ means\ the\ y-value\ of\ the\ vertex\ is\ the\ highest\ point.

\displaystyle This\ quadratic\ is\ in\ vertex\ form: f(x)=a(x-h)^{2}+k

\displaystyle The\ k\ value\ is\ the\ y-value\ of\ the\ vertex\ which\ is\ 7.

\displaystyle Given\ that\ the\ parabola\ opens\ down\ and\ the\ y-value\ of\ the\ vertex\ is\ 7,

\displaystyle the\ RANGE\ must\ be\ \mathbf{y\leq 7}.

Example Question #162 : Advanced Geometry

Find the \displaystyle y-intercept and range for the function:

\displaystyle f(x)=5(x+3)^{2}-4.

Possible Answers:

\displaystyle Range: y\leq -4, y-int: (0,-4)

\displaystyle Range: y\geq-4, y-int: (0,-4)

\displaystyle Range: y\leq -4, y-int: (0,41)

\displaystyle Range: y\geq-4, y-int: (0,41)

Correct answer:

\displaystyle Range: y\geq-4, y-int: (0,41)

Explanation:

\displaystyle The\ range\ for\ a\ quadratic\ is\ determined\ from\ the\ y-value\ of\ the\ vertex.

\displaystyle This\ equation\ is\ written\ in\ vertex\ form: y=a(x-h)^{2}+k

\displaystyle The\ k -value\ is\ the\ y-coordinate\ for\ the\ vertex.

\displaystyle For\ this\ function\ y=5(x+3)^{2}-4,\ the\ k\ value\ is -4.

\displaystyle We\ can\ also\ see\ from\ the\ a-value,\ which\ is\ positive\ 5,\ that\ this\ parabola\ will\ open\ up\ on\ the\ graph.

\displaystyle \\Both\ of\ these\ together\ give\ us\ the\ range\ which\ is\ y\geq-4.\ It\ is \geq\ because\ the\ parabola\ opens\ up.

\displaystyle To\ find\ the\ y-intercept,\ you\ must\ plug\ in\ x=0\ to\ the\ original\ equation.

\displaystyle y=5(0+3)^{2}-4

 \displaystyle Pay\ attention\ to\ order\ of\ operations\ by\ squaring\ the\ (-3)\ before\ multiplying\ by\ 5.

\displaystyle After\ simplifying\ we\ get\ y=41\ which\ is\ the\ y-intercept.

Example Question #163 : Advanced Geometry

Find the equation based on the graph shown below:

Screen shot 2015 10 21 at 3.40.06 pm

Possible Answers:

\displaystyle y=x^2-x-12

\displaystyle y=x^2-7x+12

\displaystyle y=x^2+x-12

\displaystyle y=x^2+7x+12

\displaystyle y=x^2-4

Correct answer:

\displaystyle y=x^2-x-12

Explanation:

When you look at the graph, you will see the x-intercepts are

\displaystyle (4,0)(-3,0) 

and the y-intercept is 

\displaystyle (0,-12).

These numbers are the solutions to the equation.

You can work backwards and see what the actual equation will come out as,

\displaystyle y=(x-4)(x+3).

This would distribute to 

\displaystyle y=x^2-4x+3x-12 

and then simplify to 

\displaystyle y=x^2-x-12.

This also would show a y-intercept of \displaystyle (0,-12).

Example Question #164 : Advanced Geometry

\displaystyle Find\ the\ vertex\ for\ the\ function: f(x)=4x^{2}-16x+11.

Possible Answers:

\displaystyle (-2,59)

\displaystyle (0,11)

\displaystyle (4,-16)

\displaystyle (2,-5)

Correct answer:

\displaystyle (2,-5)

Explanation:

\displaystyle Use \frac{-b}{2a}\ to\ calculate\ the\ x-value\ of\ the\ vertex.

\displaystyle \small Given\ the\ function\ f(x)=4x^{2}-16x+11\ is\ in\ standard\ form\ y=ax^{2}+bx+c

\displaystyle \small We\ can\ see\ that\ a=4, b=-16\ and\ c=11

\displaystyle \small Substitute\ these\ values\ in\ for\ x=\frac{-b}{2a}\ to\ get\ x=\frac{16}{8}=2

\displaystyle \small Now\ substitute\ x=2\ into\ the\ function\ f(x)\ to\ get:

\displaystyle \small f(2)=4(2)^{2}-16(2)+11=-5

\displaystyle \small The\ coordinates\ of\ the\ vertex\ are\ (2,-5)

Example Question #165 : Advanced Geometry

Determine the domain and range for the graph of the below function: 

\displaystyle f(x)=-3x^2

Possible Answers:

\displaystyle Domain:\mathbb{R}\and\ Range: y\leq0

\displaystyle Domain:\mathbb{R}\and\ Range: y\leq-3

\displaystyle Domain:\mathbb{R}\and\ Range: y\geq0

\displaystyle Domain:\mathbb{R}\and\ Range: y\geq-3

Correct answer:

\displaystyle Domain:\mathbb{R}\and\ Range: y\leq0

Explanation:

When finding the domain and range of a quadratic function, we must first find the vertex. 

\displaystyle To\ find\ the\ vertex\ of\ a\ quadratic\ we\ must\ first\ find\ the\ x-coordinate\ using\ the\ formula:

\displaystyle x=\frac{-b}{2a}

\displaystyle We\ are\ given\ f(x)=-3x^2

\displaystyle This\ gives\ us\ an\ a-value\ of\ -3\ while\ b\ and\ c\ both\ equal\ 0.

\displaystyle Plugging\ these\ values\ in\ give\ us\ an\ x-coordinate\ and\ y-coordinate\ of\ 0.

\displaystyle The\ domain\ of\ all\ quadratics\ is\ ALL\ REAL\ NUMBERS\ (\mathbb{R})

\displaystyle With\ a\ negative\ a-value\ we\ know\ this\ quadratic\ opens\ down:

\displaystyle so\ the\ range\ is\ y\leq0

Example Question #161 : Advanced Geometry

Give the \displaystyle x-coordinate(s) of the \displaystyle x-intercept(s) of the graph of the function

\displaystyle f(x)= x^{2}-3x-10.

Possible Answers:

\displaystyle -2, 5

\displaystyle -1, 10

The graph of \displaystyle f(x) has no \displaystyle x-intercept.

\displaystyle -10, 1

\displaystyle -5, 2

Correct answer:

\displaystyle -2, 5

Explanation:

The \displaystyle x-intercept(s) of the graph of \displaystyle f(x) are the point(s) at which it intersects the \displaystyle x-axis. The \displaystyle y-coordinate of each is 0; their \displaystyle x-coordinate(s) are those value(s) of \displaystyle x for which \displaystyle f(x) = 0, so set up, and solve for \displaystyle x, the equation:

\displaystyle f(x)= 0

\displaystyle x^{2}-3x-10 = 0

To solve this quadratic equation, first, factor the quadratic trinomial as 

\displaystyle (x+a)(x+b)

by finding two integers with sum \displaystyle -3 and product \displaystyle -10. From trial and error, we find the integers \displaystyle -5 and 2, so the equation can be rewritten as 

\displaystyle (x-5)(x+2) = 0

By the Zero Factor Principle, one of these two binomials is equal to 0, so either

\displaystyle x-5 = 0,

in which case 

\displaystyle x = 5,

or 

\displaystyle x+2 = 0,

in which case

\displaystyle x= -2.

The graph has two \displaystyle x-intercepts at the points \displaystyle (-2, 0) and \displaystyle (5, 0).

Example Question #162 : Advanced Geometry

Give the domain of the function \displaystyle f(x) = x^{2} + 4x - 17.

Possible Answers:

\displaystyle \left \{ x | x >0 \right \}

\displaystyle \left \{ x | x > -17 \right \}

\displaystyle \left \{ x | x > -21 \right \}

\displaystyle \left \{x| x \ge -2\right \}

The set of all real numbers 

Correct answer:

The set of all real numbers 

Explanation:

\displaystyle f(x) is a polynomial function, and as such has the set of all real numbers as its domain.

Learning Tools by Varsity Tutors