ACT Math : Trigonometry

Study concepts, example questions & explanations for ACT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #11 : Reference Angles

What is the reference angle for \displaystyle 257^{\circ}?

Possible Answers:

\displaystyle 13^{\circ}

\displaystyle 77^{\circ}

\displaystyle 257^{\circ}

\displaystyle 103^{\circ}

\displaystyle 93^{\circ}

Correct answer:

\displaystyle 77^{\circ}

Explanation:

A reference angle is the smallest possible angle between a given angle measurement and the x-axis.

In this case, our angle \displaystyle 257^{\circ} lies in Quadrant III, so the angle is found by the formula \displaystyle \angle A_r = \angle A - 180^{\circ}.

\displaystyle \angle A_r = \angle A - 180^{\circ} \displaystyle = \displaystyle 257^{\circ} - 180^{\circ} = 77^{\circ}

Thus, the reference angle for \displaystyle 257^{\circ} is \displaystyle 77^{\circ}.

Example Question #52 : Trigonometry

What is the reference angle for \displaystyle 125^{\circ}?

Possible Answers:

\displaystyle 125^{\circ}

\displaystyle 55^{\circ}

\displaystyle 75^{\circ}

\displaystyle 235^{\circ}

\displaystyle 35^{\circ}

Correct answer:

\displaystyle 55^{\circ}

Explanation:

A reference angle is the smallest possible angle between a given angle measurement and the x-axis.

In this case, our angle \displaystyle 125^{\circ} lies in Quadrant II, so we can find our reference angle using the formula

\displaystyle \angle A_r = 180^{\circ}- \angle A.

\displaystyle \angle A_r = 180^{\circ}- \angle A \displaystyle = \displaystyle 180^{\circ} - 125^{\circ} = 55^{\circ}

Thus, the reference angle for \displaystyle 125^{\circ} is \displaystyle 55^{\circ}.

Example Question #1 : How To Find The Period Of The Sine

What is the period of 2sin(4Θ)?

Possible Answers:

\displaystyle 4

\displaystyle 2

\displaystyle \frac{\pi}{2}

\displaystyle 2\pi

None of the answers are correct

Correct answer:

\displaystyle \frac{\pi}{2}

Explanation:

 The period of sinΘ is 2Π, so we set the new angle equal to the base period of 2Π and solve for Θ.

So 4Θ = 2Π and Θ = Π/2.

Example Question #1 : Sine

A function with period P will repeat on intervals of length P, and these intervals are referred to as periods.

 

Find the period of 

\displaystyle sin\, (\pi x).

Possible Answers:

\displaystyle 2\pi

\displaystyle 2

\displaystyle \pi

\displaystyle 4\pi

Correct answer:

\displaystyle 2

Explanation:

For the function

\displaystyle sin\, (Ax)

the period is equal to

\displaystyle \frac{2\pi}{A}

in this case

\displaystyle \frac{2\pi}{\pi}

which reduces to \displaystyle 2.

Example Question #1 : How To Find The Period Of The Sine

A function with period P will repeat on intervals of length P, and these intervals are referred to as periods.

Find the period of the function

\displaystyle \sin \bigg(\frac{1}{2}x\bigg).

Possible Answers:

\displaystyle 4\pi

\displaystyle 4

\displaystyle \frac{1}{2}

\displaystyle \pi

Correct answer:

\displaystyle 4\pi

Explanation:

For the function

\displaystyle sin\, (Ax)

the period is equal to

\displaystyle \frac{2\pi}{A}

in this case

\displaystyle \frac{2\pi}{\frac{1}{2}}=2\pi \cdot \frac{2}{1}

which reduces to \displaystyle 4\pi.

Example Question #2 : Sine

What is the period of the function \displaystyle f(t) = -2\sin(4t)?

Possible Answers:

\displaystyle 2\pi

\displaystyle -2

\displaystyle 4

\displaystyle \frac{\pi}{2}

\displaystyle -\pi

Correct answer:

\displaystyle \frac{\pi}{2}

Explanation:

To find the period of Sine and Cosine functions you use the formula:
\displaystyle \frac{2\pi}{\left | b\right |} where \displaystyle b comes from \displaystyle f(t) = a\sin(bt). Looking at our formula you see b is 4 so 
\displaystyle \frac{2\pi}{\left | 4\right |}=\frac{\pi}{2}

Example Question #5 : Sine

What is the period of the given trigonometric function:

\displaystyle c(t) = 3\sin(-2t). Leave your answer in terms of \displaystyle \pi, simplify all fractions.

Possible Answers:

\displaystyle \frac{\pi}{2}

\displaystyle -\pi

\displaystyle \pi

\displaystyle \frac{\pi}{3}

\displaystyle -\frac{\pi}{2}

Correct answer:

\displaystyle \pi

Explanation:

To find the period of a sine, cosine, cosecant, or secant funciton use the formula:

\displaystyle \omega = \frac{2\pi}{\left|b\right|} where \displaystyle b comes from the general formula: \displaystyle c(t)=a\sin(bt). We see that for our equation \displaystyle \left|b\right| = 2 and so the period is \displaystyle \pi when you reduce the fraction.

Example Question #2 : How To Find The Period Of The Sine

Find the period of the following formula:

\displaystyle f(x)=2\sin(4\theta)

Possible Answers:

\displaystyle \frac{\pi}{2}

\displaystyle \frac{1}{\pi}

\displaystyle \frac{2}{\pi}

\displaystyle \pi

\displaystyle 2\pi

Correct answer:

\displaystyle \frac{\pi}{2}

Explanation:

To find period, simply remember the following formula:

where B is the coefficient in front of x. Thus,

Example Question #1 : How To Find The Domain Of The Sine

Find the domain of the function: \displaystyle y=-9\sin(5\theta-3)-3

Possible Answers:

\displaystyle \left(-\frac{2\pi}{5},\infty\right)

\displaystyle \left(-\frac{2\pi}{5},\frac{2\pi}{5}\right)

\displaystyle \left[-\frac{2\pi}{5},\frac{2\pi}{5}\right]

\displaystyle \left(-\frac{5}{3},\frac{2\pi}{5}\right)

\displaystyle {}(-\infty,\infty)

Correct answer:

\displaystyle {}(-\infty,\infty)

Explanation:

The function \displaystyle y=-9\sin(5\theta-3)-3 is related to the parent function \displaystyle y=\sin(\theta), which has a domain of \displaystyle (-\infty.\infty).

The value of theta for \displaystyle y=-9\sin(5\theta-3)-3 has no restriction and is valid for all real numbers.  

The answer is \displaystyle (-\infty,\infty).

 

Example Question #2 : How To Find The Domain Of The Sine

What is the domain of the given trigonometric function:

\displaystyle z(t) = 2\sin(-2t)

Possible Answers:

\displaystyle [-2,2]

\displaystyle [0,\infty]

\displaystyle [-\pi,\pi]

\displaystyle [-2,0]

\displaystyle (-\infty,\infty)

Correct answer:

\displaystyle (-\infty,\infty)

Explanation:

For both Sine and Cosine, since there are no asymptotes like Tangent and Cotangent functions, the function can take in any value for \displaystyle t. Thus the domain is:

\displaystyle (-\infty,\infty)

Learning Tools by Varsity Tutors