All ACT Math Resources
Example Questions
Example Question #2 : How To Find The Surface Area Of A Prism
A box is 5 inches long, 5 inches wide, and 4 inches tall. What is the surface area of the box?
The box will have six total faces: an identical "top and bottom," and identical "left and right," and an identical "front and back." The total surface area will be the sum of these faces.
Since the six faces consider of three sets of pairs, we can set up the equation as:
Each of these faces will correspond to one pair of dimensions. Multiply the pair to get the area of the face.
Substitute the values from the question to solve.
Example Question #3 : How To Find The Surface Area Of A Prism
What is the surface area of a rectangular brick with a length of 12 in, a width of 8 in, and a height of 6 in?
None of the answers are correct
The formula for the surface area of a rectangular prism is given by:
SA = 2LW + 2WH + 2HL
SA = 2(12 * 8) + 2(8 * 6) + 2(6 * 12)
SA = 2(96) + 2(48) + 2(72)
SA = 192 + 96 + 144
SA = 432 in2
216 in2 is the wrong answer because it is off by a factor of 2
576 in3 is actually the volume, V = L * W * H
Example Question #1 : How To Find The Volume Of A Prism
A box's length is twice as long as its width. Its height is the sum of its length and its width. What is the volume of this box if its length is 10 units?
units cubed
units cubed
units cubed
units cubed
units cubed
units cubed
The formula for the volume of a rectangular prism is , where "" is volume, "" is length, "" is width and "" is height.
We know that and . By rearranging , we get . Substituting into the volume equation for and into the same equation for , we get the following:
units cubed
Example Question #2 : Finding Volume Of A Rectangular Prism
A rectangular prism has the following dimensions:
Length:
Width:
Height:
Find the volume.
Given that the dimensions are: , , and and that the volume of a rectangular prism can be given by the equation:
, where is length, is width, and is height, the volume can be simply solved for by substituting in the values.
This final value can be approximated to .
Example Question #632 : Geometry
A rectangular box has two sides with the following lengths:
and
If it possesses a volume of , what is the area of its largest side?
49
28
21
12
16
28
The volume of a rectangular prism is found using the following formula:
If we substitute our known values, then we can solve for the missing side.
Divide both sides of the equation by 12.
We now know that the missing length equals 7 centimeters.
This means that the box can have sides with the following dimensions: 3cm by 4cm; 7cm by 3cm; or 7cm by 4cm. The greatest area of one side belongs to the one that is 7cm by 4cm.
Example Question #1 : How To Find The Volume Of A Prism
Solve for the volume of a prism that is 4m by 3m by 8m.
The volume of the rectangle
so we plug in our values and obtain
.
Example Question #1 : How To Find The Length Of An Edge Of A Tetrahedron
A regular tetrahedron has a surface area of . Each face of the tetrahedron has a height of . What is the length of the base of one of the faces?
A regular tetrahedron has 4 triangular faces. The area of one of these faces is given by:
Because the surface area is the area of all 4 faces combined, in order to find the area for one of the faces only, we must divide the surface area by 4. We know that the surface area is , therefore:
Since we now have the area of one face, and we know the height of one face is , we can now plug these values into the original formula:
Therefore, the length of the base of one face is .
Example Question #1 : How To Find The Length Of An Edge Of A Tetrahedron
What is the length of an edge of a regular tetrahedron if its surface area is 156?
The only given information is the surface area of the regular tetrahedron.
This is a quick problem that can be easily solved for by using the formula for the surface area of a tetrahedron:
If we substitute in the given infomation, we are left with the edge being the only unknown.
Example Question #1 : Tetrahedrons
What is the length of a regular tetrahedron if one face has an area of 43.3 squared units and a slant height of ?
Cannot be determined
The problem provides the information for the slant height and the area of one of the equilateral triangle faces.
The slant height merely refers to the height of this equilateral triangle.
Therefore, if we're given the area of a triangle and it's height, we should be able to solve for it's base. The base in this case will equate to the measurement of the edge. It's helpful to remember that in this case, because all faces are equilateral triangles, the measure of one length will equate to the length of all other edges.
We can use the equation that will allow us to solve for the area of a triangle:
where is base length and is height.
Substituting in the information that's been provided, we get:
Example Question #2 : How To Find The Length Of An Edge Of A Tetrahedron
The volume of a regular tetrahedron is 94.8. What is the measurement of one of its edges?
Cannot be determined
This becomes a quick problem by just utilizing the formula for the volume of a tetrahedron.
Upon substituting the value for the volume into the formula, we are left with , which represents the edge length.
Certified Tutor
Certified Tutor