All ACT Math Resources
Example Questions
Example Question #5 : Complex Numbers
Complex numbers take the form , where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.
Simplify:
When adding or subtracting complex numbers, the real terms are additive/subtractive, and so are the nonreal terms.
Example Question #6 : Complex Numbers
Complex numbers take the form , where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number.
Can you add the following two numbers: ? If so, what is their sum?
Complex numbers take the form a + bi, where a is the real term in the complex number and bi is the nonreal (imaginary) term in the complex number. Taking this, we can see that for the real number 8, we can rewrite the number as , where represents the (zero-sum) non-real portion of the complex number.
Thus, any real number can be added to any complex number simply by considering the nonreal portion of the number to be .
Example Question #1 : How To Add Complex Numbers
Complex numbers take the form , where is the real term in the complex number and is the nonreal (imaginary) term in the complex number.
Which of the following is incorrect?
Complex numbers take the form , where is the real term in the complex number and is the nonreal (imaginary) term in the complex number.
Thus, to balance the equation, add like terms on the left side.
Example Question #1 : How To Divide Complex Numbers
Simplify:
Multiply both numberator and denominator by :
Example Question #1 : How To Divide Complex Numbers
Evaluate:
First, divide 100 by as follows:
Now dvide this result by :
Example Question #3 : How To Divide Complex Numbers
Evaluate:
First, divide 100 by as follows:
Now, divide this by :
Example Question #2 : How To Divide Complex Numbers
Evaluate:
First, evaluate :
Now divide this into :
Example Question #5 : How To Divide Complex Numbers
Evaluate:
First, evaluate using the square pattern:
Divide this into :
Example Question #151 : Exponents
Complex numbers take the form , where is the real term in the complex number and is the nonreal (imaginary) term in the complex number.
Simplify:
This problem can be solved very similarly to a binomial such as . In this case, both the real and nonreal terms in the complex number are eligible to be divided by the real divisor.
, so
Example Question #2341 : Act Math
Complex numbers take the form , where is the real term in the complex number and is the nonreal (imaginary) term in the complex number.
Simplify by using conjugates:
Solving this problem using a conjugate is just like conjugating a binomial to simplify a denominator.
Multiply both terms by the denominator's conjugate.
Simplify. Note .
Combine and simplify.
Simplify the numerator.
The prime denominator prevents further simplifying.
Thus, .
Certified Tutor
Certified Tutor