All ACT Math Resources
Example Questions
Example Question #4 : Squaring / Square Roots / Radicals
Which of the following expressions is equal to the following expression?
First, break down the component parts of the square root:
Combine like terms in a way that will let you pull some of them out from underneath the square root symbol:
Pull out the terms with even exponents and simplify:
Example Question #12 : Squaring / Square Roots / Radicals
What is,
?
To find an equivalency we must rationalize the denominator.
To rationalize the denominator multiply the numerator and denominator by the denominator.
Factor out 6,
Extract perfect square 9 from the square root of 18.
Example Question #1 : How To Subtract Complex Numbers
Subtract from
, given:
A complex number is a combination of a real and imaginary number. To subtract complex numbers, subtract each element separately.
In equation ,
is the real component and
is the imaginary component (designated by
). In equation
,
is the real component and
is the imaginary component. Solving for
,
Example Question #2 : How To Subtract Complex Numbers
Simplify the exponent,
.
When you have an exponent on the outside of parentheses while another is on the inside of the parentheses, such as in , multiply the exponents together to get the answer:
.
This is different than when you have two numbers with the same base multiplied together, such as in . In that case, you add the exponents together.
Example Question #2 : Complex Numbers
Complex numbers take the form , where
is the real term in the complex number and
is the nonreal (imaginary) term in the complex number.
Simplify:
Solving this equation is very similar to solving a linear binomial like . To solve, just combine like terms, being careful to watch for double negatives.
Example Question #1 : Complex Numbers
Complex numbers take the form , where
is the real term in the complex number and
is the nonreal (imaginary) term in the complex number.
Which of the following is incorrect?
A problem like this can be solved similarly to a linear binomial like /
Example Question #2 : How To Subtract Complex Numbers
Complex numbers take the form , where
is the real term in the complex number and
is the nonreal (imaginary) term in the complex number.
Which of the following equations simplifies into ?
This equation can be solved very similarly to a binomial like .
Example Question #1 : Complex Numbers
Suppose and
Evaluate the following expression:
Substituting for and
, we have
This simplifies to
which equals
Example Question #2 : Complex Numbers
What is the solution of the following equation?
A complex number is a combination of a real and imaginary number. To add complex numbers, add each element separately.
First, distribute:
Then, group the real and imaginary components:
Solve to get:
Example Question #3 : Complex Numbers
What is the sum of and
given
and
?
A complex number is a combination of a real and imaginary number. To add complex numbers, add each element separately.
In equation ,
is the real component and
is the imaginary component (designated by
).
In equation ,
is the real component and
is the imaginary component.
When added,
All ACT Math Resources
