Trigonometry : Unit Circle and Radians

Study concepts, example questions & explanations for Trigonometry

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Unit Circle And Radians

What point corresponds to the angle \(\displaystyle -\pi\) on the unit circle?

12

Possible Answers:

\(\displaystyle (0,0)\)

\(\displaystyle (1,1)\)

\(\displaystyle (-1,0)\)

\(\displaystyle (1,0)\)

\(\displaystyle (-1,-1)\)

Correct answer:

\(\displaystyle (-1,0)\)

Explanation:

The unit circle is the circle of radius one centered at the origin \(\displaystyle (0,0)\) in the Cartesian coordinate system. \(\displaystyle -\pi\) is equivalent to \(\displaystyle -180^{\circ}\) which corresponds to the point \(\displaystyle (-1,0)\) on the unit circle.

Example Question #2 : Unit Circle And Radians

What point corresponds to an angle of \(\displaystyle \frac{5\pi}{2}\) radians on the unit circle?

12

Possible Answers:

\(\displaystyle (-1,1)\)

\(\displaystyle (1,1)\)

\(\displaystyle (0,0)\)

\(\displaystyle (0,1)\)

\(\displaystyle (-1,-1)\)

Correct answer:

\(\displaystyle (0,1)\)

Explanation:

The unit circle is the circle of radius one centered at the origin \(\displaystyle (0,0)\) in the Cartesian coordinate system. \(\displaystyle \frac{5\pi}{2}\) radians is equivalent to \(\displaystyle \frac{5\pi}{2}\times \frac{180^{\circ}}{\pi}=450^{\circ}\). This is a full circle \(\displaystyle 360^{\circ}\) plus a quarter-turn \(\displaystyle 90^{\circ}\) more. So, the angle \(\displaystyle \frac{5\pi}{2}\) corresponds to the point \(\displaystyle (0,1)\) on the unit circle.

Example Question #3 : Unit Circle

Give the angle between \(\displaystyle 0^{\circ}\) and \(\displaystyle 360^{\circ}\) that corresponds to the point \(\displaystyle (-1,0)\).

Possible Answers:

\(\displaystyle 120^{\circ}\)

\(\displaystyle 90^{\circ}\)

\(\displaystyle 180^{\circ}\)

\(\displaystyle 45^{\circ}\)

\(\displaystyle 60^{\circ}\)

Correct answer:

\(\displaystyle 180^{\circ}\)

Explanation:

The angle \(\displaystyle \pi\) or \(\displaystyle 180^{\circ}\) corresponds to the point \(\displaystyle (-1,0)\).

Example Question #4 : Unit Circle

What point corresponds to the angle \(\displaystyle \frac{\pi}{2}\) on the unit circle?

 

12

 

Possible Answers:

\(\displaystyle (0,1)\)

\(\displaystyle (0,-1)\)

\(\displaystyle (1,1)\)

\(\displaystyle (-1,-1)\)

\(\displaystyle (1,0)\)

Correct answer:

\(\displaystyle (0,1)\)

Explanation:

The unit circle is the circle of radius one centered at the origin \(\displaystyle (0,0)\) in the Cartesian coordinate system. \(\displaystyle \frac{\pi}{2}\) is equivalent to \(\displaystyle 90^{\circ}\) which corresponds to the point \(\displaystyle (0,1)\) on the unit circle.

 

 

Example Question #3 : Unit Circle

Which of the following points is NOT on the unit circle?

Possible Answers:

\(\displaystyle (\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2})\)

\(\displaystyle (-\frac{1}{2}, -\frac{\sqrt{3}}{2})\)

\(\displaystyle (1,0)\)

\(\displaystyle (\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2})\)

\(\displaystyle (0, -1)\)

Correct answer:

\(\displaystyle (\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2})\)

Explanation:

For a point to be on the unit circle, it has to have a radius of one.  Therefore, the sum of the squares of point's coordinates must also equal one.  

Let's try the point \(\displaystyle (\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2})\).

\(\displaystyle (\frac{\sqrt{3}}{2})^{2} + (\frac{\sqrt{2}}{2})^{2} = \frac{5}{4} \neq 1\)

Therefore, this point is not on the unit circle.

Example Question #4 : Unit Circle

When looking at the unit circle, what are the coordinates for an angle of \(\displaystyle \frac{\pi}{4}\)?

Possible Answers:

\(\displaystyle \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)\)

\(\displaystyle (0,1)\)

\(\displaystyle (\sqrt{2},\sqrt{2})\)

\(\displaystyle \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\)

\(\displaystyle \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)\)

Correct answer:

\(\displaystyle \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\)

Explanation:

The coordinates of the point on the circle for each angle are \(\displaystyle (\cos\theta,\sin\theta)\).

Since \(\displaystyle \cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}\) and \(\displaystyle \sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}\), the point will be \(\displaystyle (\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})\).

Example Question #3 : Unit Circle And Radians

What is the radius of the unit circle? 

Possible Answers:

\(\displaystyle \frac{1}{2}\)

\(\displaystyle \frac{3}{4}\)

\(\displaystyle 2\)

\(\displaystyle 1\)

\(\displaystyle 3\)

Correct answer:

\(\displaystyle 1\)

Explanation:

By definition, the radius of the unit circle is 1. 

Example Question #4 : Unit Circle And Radians

What point corresponds to the angle \(\displaystyle \frac{\pi}{3}\) on the unit circle?

 

8

Possible Answers:

\(\displaystyle \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)\)

\(\displaystyle (1,1)\)

\(\displaystyle (0,-1)\)

\(\displaystyle \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)\)

\(\displaystyle \left(\frac{1}{2},\frac{1}{2}\right)\)

Correct answer:

\(\displaystyle \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)\)

Explanation:

In order to find the point corresponds to the angle \(\displaystyle \frac{\pi}{3}\) on the unit circle we can write:

 

\(\displaystyle t=\frac{\pi}{3}\ or\ 60^{\circ}\)

 

In the unit circle which has the radious of  \(\displaystyle R=1\)  we can write:

 

\(\displaystyle cos\ t=\frac{x}{R}=\frac{x}{1}=x\Rightarrow x=cos(60^{\circ})=\frac{1}{2}\)

\(\displaystyle sin\ t=\frac{y}{R}=\frac{y}{1}=y\Rightarrow y=sin(60^{\circ})=\frac{\sqrt{3}}{2}\)

 

So the point corresponds to the angle \(\displaystyle \frac{\pi}{3}\) on the unit circle is \(\displaystyle (\frac{1}{2},\frac{\sqrt{3}}{2})\)

Example Question #6 : Unit Circle

What point corresponds to an angle of \(\displaystyle 540^{\circ}\)  on the unit circle?

12

Possible Answers:

\(\displaystyle (1,-1)\)

\(\displaystyle (0,1)\)

\(\displaystyle (-1,-1)\)

\(\displaystyle (1,1)\)

\(\displaystyle (-1,0)\)

Correct answer:

\(\displaystyle (-1,0)\)

Explanation:

The unit circle is the circle of radius one centered at the origin \(\displaystyle (0,0)\) in the Cartesian coordinate system. \(\displaystyle 540^{\circ}\) is a full circle \(\displaystyle 360^{\circ}\) plus a \(\displaystyle 180^{\circ}\) more. So, the angle \(\displaystyle 540^{\circ}\) corresponds to the point \(\displaystyle (-1,0)\) on the unit circle.

Example Question #5 : Unit Circle And Radians

What must be the area of the unit circle?

Possible Answers:

\(\displaystyle 2\pi\)

\(\displaystyle \pi\)

\(\displaystyle \frac{\pi}{2}\)

\(\displaystyle \frac{\pi}{4}\)

The area can vary.

Correct answer:

\(\displaystyle \pi\)

Explanation:

The unit circle must have a radius of 1.

Use the circular area formula to find the area.

\(\displaystyle A_{circle}= \pi r^2= \pi\)

 

Learning Tools by Varsity Tutors