SSAT Upper Level Math : Geometry

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Coordinate Geometry

What is the equation of a line that is parallel to  and passes through ?

Possible Answers:

Correct answer:

Explanation:

To solve, we will need to find the slope of the line. We know that it is parallel to the line given by the equation, meaning that the two lines will have equal slopes. Find the slope of the given line by converting the equation to slope-intercept form.

The slope of the line will be . In slope intercept-form, we know that the line will be . Now we can use the given point to find the y-intercept.

The final equation for the line will be .

Example Question #3 : Coordinate Geometry

What line is parallel to   and passes through the point ?

Possible Answers:

Correct answer:

Explanation:

Start by converting the original equation to slop-intercept form.

The slope of this line is . A parallel line will have the same slope. Now that we know the slope of our new line, we can use slope-intercept form and the given point to solve for the y-intercept.

Plug the y-intercept into the slope-intercept equation to get the final answer.

Example Question #2 : How To Find The Equation Of A Parallel Line

What is the equation of a line that is parallel to the line \small y=\frac{1}{2}x+3 and includes the point ?

Possible Answers:

\small y=\frac{1}{2}x+6

\small y=2x-6

\small y=\frac{1}{2}x

\small y=-2x+10

Correct answer:

\small y=\frac{1}{2}x

Explanation:

The line parallel to \small y=\frac{1}{2}x+3 must have a slope of \frac{1}{2}, giving us the equation \small y=\frac{1}{2}x+b. To solve for b, we can substitute the values for y and x.

\small 2=(\frac{1}{2})(4)+b 

\small 2=2+b

\small b=0

Therefore, the equation of the line is \small y=\frac{1}{2}x.

Example Question #4 : Coordinate Geometry

What line is parallel to , and passes through the point ?

Possible Answers:

Correct answer:

Explanation:

Converting the given line to slope-intercept form we get the following equation:

For parallel lines, the slopes must be equal, so the slope of the new line must also be . We can plug the new slope and the given point into the slope-intercept form to solve for the y-intercept of the new line.

Use the y-intercept in the slope-intercept equation to find the final answer.

Example Question #3 : Coordinate Geometry

What line is parallel to  at ?

Possible Answers:

None of the answers are correct

Correct answer:

Explanation:

Find the slope of the given line:  (slope intercept form)

 therefore the slope is 

Parallel lines have the same slope, so now we need to find the equation of a line with slope  and going through point  by substituting values into the point-slope formula.

So, 

Thus, the new equation is 

Example Question #1 : How To Find The Equation Of A Parallel Line

If the line through the points (5, –3) and (–2, p) is parallel to the line y = –2x – 3, what is the value of p ?

Possible Answers:

10

0

4

11

17

Correct answer:

11

Explanation:

Since the lines are parallel, the slopes must be the same. Therefore, (p+3) divided by (25) must equal 2. 11 is the only choice that makes that equation true. This can be solved by setting up the equation and solving for p, or by plugging in the other answer choices for p. 

Example Question #171 : Coordinate Geometry

Find the equation of the line that goes through the point  and is parallel to the line with the equation .

Possible Answers:

Correct answer:

Explanation:

Because the two lines are parallel, we know that the slope of the line we need to find must also be .

We can then plug in the given point and the slope into the equation of a line to find the y-intercept.

Now, we can write the equation of the line.

Example Question #172 : Coordinate Geometry

Find the equation of the line that passes through the point  and is parallel to the line with the equation .

Possible Answers:

Correct answer:

Explanation:

Because the two lines are parallel, we know that the slope of the line we need to find must also be .

 

Now, we can plug in the point given by the question to find the y-intercept.

From this, we can write the following equation:

Example Question #221 : Geometry

Find the equation of the line that passes through the point  and is parallel to the line with the equation .

Possible Answers:

Correct answer:

Explanation:

Because the two lines are parallel, we know that the slope of the line we need to find must also be .

Next, plug in the point given by the question to find the y-intercept of the line.

Now, we know that the equation of the line must be .

Example Question #171 : Lines

Find the equation of the line that passes through the point  and is parallel to the line with the equation .

Possible Answers:

Correct answer:

Explanation:

Because the two lines are parallel, we know that the slope of the line we need to find must also be .

Next, plug in the point given by the question to find the y-intercept of the line.

Now, we know the equation of the line must be .

Learning Tools by Varsity Tutors