SSAT Upper Level Math : Coordinate Geometry

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #511 : Ssat Upper Level Quantitative (Math)

A horizontal parabola on the coordinate plane has vertex \displaystyle (-3, -6); one of its \displaystyle y-intercepts is \displaystyle (0, 4).

Give its equation.

Possible Answers:

\displaystyle x = \frac{9}{10} y^{2}+ \frac{27}{5} y+ \frac{81}{10}

\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y-\frac{48}{25}

\displaystyle x = \frac{6}{49} y^{2}+\frac{36}{49} y-\frac{240}{49}

\displaystyle x = \frac{7}{36} y^{2}+ \frac{7}{3} y+7

Insufficient information is given to determine the equation.

Correct answer:

\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y-\frac{48}{25}

Explanation:

The equation of a horizontal parabola, in vertex form, is

\displaystyle x = a(y-k)^{2}+h,

where \displaystyle (h,k) is the vertex. Set \displaystyle h = -3,k=-6:

\displaystyle x = a[y-(-6)]^{2}+ (-3)

\displaystyle x = a(y+6)^{2}-3

To find \displaystyle a, use the known \displaystyle y-intercept, setting \displaystyle x =0, y=4:

\displaystyle 0 = a(4+6)^{2}-3

\displaystyle 0 = a\cdot 10^{2}-3

\displaystyle 0 =100 a-3

\displaystyle 100a= 3

\displaystyle a = \frac{3}{100}

The equation, in vertex form, is \displaystyle x = \frac{3}{100}(y+6)^{2}-3; in standard form:

\displaystyle x = \frac{3}{100}(y^{2}+12+36)-3

\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y+\frac{27}{25} - \frac{75}{25}

\displaystyle x = \frac{3}{100} y^{2}+\frac{9}{25} y-\frac{48}{25}

Example Question #512 : Ssat Upper Level Quantitative (Math)

A vertical parabola on the coordinate plane has \displaystyle y-intercepts \displaystyle (0,2) and \displaystyle (0,6), and passes through \displaystyle (3, -2).

Give its equation.

Possible Answers:

\displaystyle x = \frac{2}{3}y^{2}- \frac{16}{3}y+8

\displaystyle x =- \frac{2}{3}y^{2}+ \frac{16}{3}y-8

\displaystyle x = -\frac{3}{32} y^{2}+ \frac{3}{4} y- \frac{9}{8}

Insufficient information is given to determine the equation.

\displaystyle x = \frac{3}{32} y^{2}- \frac{3}{4} y+ \frac{9}{8}

Correct answer:

\displaystyle x = \frac{3}{32} y^{2}- \frac{3}{4} y+ \frac{9}{8}

Explanation:

A horizontal parabola which passes through  \displaystyle (0,2) and \displaystyle (0,6) has as its equation

\displaystyle x = a(y-2)(y-6).

To find \displaystyle a, substitute the coordinates of the third point, setting \displaystyle x=3,y=-2:

\displaystyle 3= a(-2-2)(-2-6)

\displaystyle 3= a(-4)(-8)

\displaystyle 3= 32a

\displaystyle a = \frac{3}{32}

The equation is therefore \displaystyle x = \frac{3}{32}(y-2)(y-6), which is, in standard form:

\displaystyle x = \frac{3}{32}(y^{2}-8y+12)

\displaystyle x = \frac{3}{32} y^{2}- \frac{3}{4} y+ \frac{9}{8}

Example Question #515 : Ssat Upper Level Quantitative (Math)

A vertical parabola on the coordinate plane has \displaystyle x-intercepts \displaystyle (2,0) and \displaystyle (6,0), and passes through \displaystyle (3, -2).

Give its equation.

Possible Answers:

\displaystyle y = \frac{2}{3}x^{2}-\frac{16}{3}x+8

\displaystyle y = - \frac{3}{2}x^{2}+12x-18

\displaystyle y = x^{2}-8x+12

\displaystyle y = \frac{3}{2}x^{2}-12x+18

\displaystyle y =- \frac{2}{3}x^{2}+\frac{16}{3}x-8

Correct answer:

\displaystyle y = \frac{2}{3}x^{2}-\frac{16}{3}x+8

Explanation:

A vertical parabola which passes through \displaystyle (2,0) and \displaystyle (6,0) has as its equation

\displaystyle y = a(x-2)(x-6)

To find \displaystyle a, substitute the coordinates of the third point, setting \displaystyle x=3,y=-2:

\displaystyle -2 = a(3-2)(3-6)

\displaystyle -2 = a \cdot 1 \cdot (-3)

\displaystyle -2 = -3a

\displaystyle a = \frac{-2}{-3}= \frac{2}{3}

The equation is \displaystyle y = \frac{2}{3}(x-2)(x-6); expand to put it in standard form:

\displaystyle y = \frac{2}{3}(x^{2}-8x+12)

\displaystyle y = \frac{2}{3}x^{2}-\frac{16}{3}x+8

Example Question #12 : How To Find The Equation Of A Curve

A horizontal parabola on the coordinate plane has \displaystyle x-intercept \displaystyle (6,0); one of its \displaystyle y-intercepts is \displaystyle (0, 2).

Give its equation.

Possible Answers:

\displaystyle x= y^{2}-5 y+ 6

\displaystyle x= -2 y^{2}+y + 6

Insufficient information is given to determine the equation.

\displaystyle x = - y^{2}- y+ 6

\displaystyle x =2y^{2}-7 y + 6

Correct answer:

Insufficient information is given to determine the equation.

Explanation:

The equation of a horizontal parabola, in standard form, is

\displaystyle x = ay^{2}+ by + c

for some real \displaystyle a,b,c

\displaystyle c is the \displaystyle x-coordinate of the \displaystyle x-intercept, so \displaystyle c=6, and the equation is

\displaystyle x = ay^{2}+ by + 6

Set \displaystyle x=0, y=2:

\displaystyle 0 = a\cdot 2^{2}+ b \cdot 2 + 6

\displaystyle 0 = 4a+2b + 6

However, no other information is given, so the values of \displaystyle a and \displaystyle b cannot be determined for certain. The correct response is that insufficient information is given.

Example Question #241 : Coordinate Geometry

A vertical parabola on the coordinate plane includes points \displaystyle (-2, 23), (1,5), and \displaystyle (3,13)

Give its equation.

Possible Answers:

\displaystyle y = 2x^{2}+10x-7

\displaystyle y = 2x^{2}+4x-1

\displaystyle y = 2x^{2}-4x+7

\displaystyle y = x^{2}-4x+8

\displaystyle y = x^{2}+4x -8

Correct answer:

\displaystyle y = 2x^{2}-4x+7

Explanation:

The standard form of the equation of a vertical parabola is

\displaystyle y=ax^{2}+bx+c

If the values of \displaystyle x and \displaystyle y from each ordered pair are substituted in succession, three equations in three variables are formed:

\displaystyle a\cdot (-2)^{2}+b(-2)+c = 23

\displaystyle 4a-2b+c = 23

 

\displaystyle a\cdot 1^{2}+b \cdot 1+c = 5

\displaystyle a+b+c = 5

 

\displaystyle a\cdot 3^{2}+b \cdot 3+c =13

\displaystyle 9a+3b+c = 13

 

The system

\displaystyle 4a-2b+c = 23

\displaystyle a+b+c = 5

\displaystyle 9a+3b+c = 13

can be solved through the elimination method.

First, multiply the second equation by \displaystyle -1 and add to the third:

\displaystyle 9a+3b+c =13

\displaystyle \underline{ -a-b-c \; \; \; =- 5 }

\displaystyle 8a+2b         \displaystyle =8

 

Next, multiply the second equation by \displaystyle -1 and add to the first:

\displaystyle 4a-2b+c = 23

\displaystyle \underline{ -a-b-c \; =- 5 }

\displaystyle 3a-3b          \displaystyle =18

Which can be divided by 3 on both sides to yield

\displaystyle a-b = 6

 

Now solve the two-by-two system

\displaystyle 8a+2b = 8

\displaystyle a-b = 6

by substitution:

\displaystyle a = b+ 6

\displaystyle 8 (b+6)+2b = 8

\displaystyle 8b+48+2b = 8

\displaystyle 10b+48 = 8

\displaystyle 10b= -40

\displaystyle b= -4

Back-solve:

\displaystyle a-(-4) = 6

\displaystyle a+4= 6

\displaystyle a =2

Back-solve again:

\displaystyle 2+(-4)+c = 5

\displaystyle -2+c=5

\displaystyle c=7

The equation of the parabola is therefore 

\displaystyle y = 2x^{2}-4x+7.

Example Question #14 : How To Find The Equation Of A Curve

A vertical parabola on the coordinate plane shares one \displaystyle x-intercept with the line of the equation \displaystyle 2x+4y = 8, and the other with the line of the equation \displaystyle 4x-2y = 12. It also passes through \displaystyle (6, -4). Give the equation of the parabola.

Possible Answers:

\displaystyle y = -\frac{2}{3}x^{2}+\frac{14}{3}x-8

\displaystyle y = \frac{2}{3}x^{2}-\frac{14}{3}x+8

The correct answer is not among the other responses.

\displaystyle y = -\frac{3}{2}x^{2}+\frac{21}{2}x-18

\displaystyle y = \frac{3}{2}x^{2}- \frac{21}{2}x+18

Correct answer:

\displaystyle y = -\frac{2}{3}x^{2}+\frac{14}{3}x-8

Explanation:

First, find the \displaystyle x-intercepts—the points of intersection with the \displaystyle x-axis—of the lines by substituting 0 for \displaystyle y in both equations.

\displaystyle 2x+4y = 8

\displaystyle 2x+4 (0) = 8

\displaystyle 2x = 8

\displaystyle x=4

\displaystyle (4,0) is the \displaystyle x-intercept of this line. 

\displaystyle 4x-2y = 12

\displaystyle 4x-2 (0)= 12

\displaystyle 4x= 12

\displaystyle x= 3

\displaystyle (3,0) is the \displaystyle x-intercept of this line. 

The parabola has \displaystyle x-intercepts at \displaystyle (3,0) and \displaystyle (4,0), so its equation can be expressed as 

\displaystyle y = a(x-3)(x-4)

for some real \displaystyle a. To find it, substitute using the coordinates of the third point, setting \displaystyle x= 6, y = -4:

\displaystyle -4 = a(6-3)(6-4)

\displaystyle -4 = a \cdot 3 \cdot 2

\displaystyle -4 = 6 a

\displaystyle a = \frac{-4}{6} = -\frac{2}{3}.

The equation is \displaystyle y = -\frac{2}{3}(x-3)(x-4), which, in standard form, can be rewritten as:

\displaystyle y = -\frac{2}{3}(x^{2}-7x+12)

\displaystyle y = -\frac{2}{3}x^{2}+\frac{14}{3}x-8

Example Question #15 : How To Find The Equation Of A Curve

A horizontal parabola on the coordinate plane includes points \displaystyle (-11, -1) \displaystyle (-1,1), and \displaystyle (10,2)

Give its equation.

Possible Answers:

\displaystyle x= -y^{2}-4y+4

\displaystyle x=2y^{2}-11y+8

\displaystyle x=2y^{2}+5y-8

\displaystyle x= y^{2}+2y-4

\displaystyle x= y^{2}-6y+4

Correct answer:

\displaystyle x=2y^{2}+5y-8

Explanation:

The standard form of the equation of a horizontal parabola is

\displaystyle x=ay^{2}+by+ c

If the values of \displaystyle x and \displaystyle y from each ordered pair are substituted in succession, three equations in three variables are formed:

\displaystyle a \cdot (-1)^{2}+b \cdot (-1)+ c = -11

\displaystyle a -b + c = -11

 

\displaystyle a \cdot (1)^{2}+b \cdot 1+ c = -1

\displaystyle a+b + c = -1

 

\displaystyle a \cdot (2)^{2}+b \cdot 2+ c = 10

\displaystyle 4a+2b+ c = 10

 

The three-by-three linear system

\displaystyle a -b + c = -11

\displaystyle a+b + c = -1

\displaystyle 4a+2b+ c = 10

can be solved by way of the elimination method. 

 

\displaystyle b can be found first, by multiplying the first equation by \displaystyle -1 and add it to the second:

\displaystyle a+b + c = -1

\displaystyle \underline{-a+b - c = 11}

        \displaystyle 2b         \displaystyle =10

\displaystyle 2b \div 2 = 10 \div 2

\displaystyle b = 5

 

Substitute 5 for \displaystyle b in the last two equations to form a two-by-two linear system:

\displaystyle a+5+ c = -1

\displaystyle a+5+ c - 5= -1 - 5

\displaystyle a + c = -6

 

\displaystyle 4a+2 \cdot 5+ c = 10

\displaystyle 4a+10+ c = 10

\displaystyle 4a+10+ c- 10 = 10 - 10

\displaystyle 4a +c = 0

 

The system 

\displaystyle a + c = -6

\displaystyle 4a +c = 0

can be solved by way of the substitution method;

\displaystyle 4a +c = 0

\displaystyle 4a +c -4a = 0 -4a

\displaystyle c = -4a

\displaystyle a + (-4a) = -6

\displaystyle -3a = -6

\displaystyle -3a\div (-3) = -6 \div (-3)

\displaystyle a = 2

 

Substitute 2 for \displaystyle a in the top equation:

\displaystyle 2 + c = -6

\displaystyle 2 + c - 2= -6 - 2

\displaystyle c= -8

 

The equation is \displaystyle x=2y^{2}+5y-8.

Example Question #301 : Geometry

Circle

Give the equation of the above circle.

Possible Answers:

\displaystyle (x+2)^{2}+ (y+4)^{2}= 5

\displaystyle (x-2)^{2}+ (y-4)^{2}= 5

None of the other choices is correct.

\displaystyle (x+2)^{2}+ (y+4)^{2}= 25

\displaystyle (x-2)^{2}+ (y-4)^{2}= 25

Correct answer:

\displaystyle (x-2)^{2}+ (y-4)^{2}= 25

Explanation:

A circle with center \displaystyle (h, k) and radius \displaystyle r has equation

\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}

The circle has center \displaystyle (2,4) and radius 5, so substitute:

\displaystyle (x-2)^{2}+ (y-4)^{2}= 5^{2}

\displaystyle (x-2)^{2}+ (y-4)^{2}= 25

Example Question #1 : How To Find The Equation Of A Circle

A circle on the coordinate plane has a diameter whose endpoints are \displaystyle (-3, 7) and \displaystyle (9, 5). Give its equation.

Possible Answers:

\displaystyle (x-3)^{2}+ (y-6)^{2}=14

\displaystyle (x-3)^{2}+ (y-6)^{2}=37

\displaystyle (x+3)^{2}+ (y+6)^{2}=148

\displaystyle (x+3)^{2}+ (y+6)^{2}=37

\displaystyle (x-3)^{2}+ (y-6)^{2}=148

Correct answer:

\displaystyle (x-3)^{2}+ (y-6)^{2}=37

Explanation:

A circle with center \displaystyle (h, k) and radius \displaystyle r has equation

\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}

The midpoint of a diameter of the circle is its center, so use the midpoint formula to find this:

\displaystyle \left ( \frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2} \right )

\displaystyle \left ( \frac{-3+9}{2}, \frac{7+5}{2} \right )

\displaystyle (3, 6)

Therefore, \displaystyle h = 3 and \displaystyle k = 6

The radus is the distance between the center and one endpoint, so take advantage of the distance formula using \displaystyle (3, 6) and \displaystyle (9, 5). We will concern ourcelves with finding the square of the radius \displaystyle r^{2}:

\displaystyle r^{2}= \left ( x_{2}-x_{1}\right )^{2} + \left ( y_{2}-y_{1}\right )^{2}

\displaystyle r^{2}= \left (9-3\right )^{2} + \left ( 5-6\right )^{2}

\displaystyle r^{2}=6^{2} + \left (-1\right )^{2}

\displaystyle r^{2}=36+ 1= 37

Substitute: 

\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}

\displaystyle (x-3)^{2}+ (y-6)^{2}=37

Example Question #3 : How To Find The Equation Of A Circle

Circle

Give the equation of the above circle.

Possible Answers:

\displaystyle x^{2}+4x + y ^{2}-6y+9=0

\displaystyle x^{2}-4x + y ^{2}+6y+9=0

\displaystyle x^{2}-4x + y ^{2}+6y-3=0

\displaystyle x^{2}-6x + y ^{2}+4y-3=0

\displaystyle x^{2}+6x + y ^{2}-4y-3=0

Correct answer:

\displaystyle x^{2}+6x + y ^{2}-4y-3=0

Explanation:

A circle with center \displaystyle (h, k) and radius \displaystyle r has equation

\displaystyle (x-h)^{2}+ (y-k)^{2}= r^{2}

The circle has center \displaystyle (-3, 2) and radius 4, so substitute:

\displaystyle (x-(-3))^{2}+ (y-2)^{2}= 4^{2}

\displaystyle (x+3)^{2}+ (y-2)^{2}= 16

\displaystyle x^{2}+6x + 9+ y ^{2}-4y+4= 16

\displaystyle x^{2}+6x + 9+ y ^{2}-4y+4- 16= 16-16

\displaystyle x^{2}+6x + y ^{2}-4y-3=0

Learning Tools by Varsity Tutors