SSAT Upper Level Math : Algebra

Study concepts, example questions & explanations for SSAT Upper Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Find Absolute Value

Define an operation  as follows:

For all real numbers \displaystyle a,b,

Evaluate: .

Possible Answers:

None of the other responses is correct.

\displaystyle 0

The expression is undefined.

\displaystyle \frac{5}{8}

\displaystyle 1 \frac{1}{8}

Correct answer:

\displaystyle 1 \frac{1}{8}

Explanation:

, or, equivalently,

\displaystyle = \frac{9}{5} \div \left ( \frac{4}{5} +\frac{4}{5} \right )

\displaystyle = \frac{9}{5} \div \frac{8}{5}

\displaystyle = \frac{9}{5} \times \frac{5}{8}

\displaystyle = \frac{9}{8}

\displaystyle =1 \frac{1}{8}

Example Question #11 : How To Find Absolute Value

Define \displaystyle p(x) = \frac{\left |x+2 \right |-1}{\left |x+1 \right |-2}.

Evaluate \displaystyle p \left (-1 \frac{1}{5} \right ).

Possible Answers:

\displaystyle -\frac{1} {9}

\displaystyle 1

\displaystyle \frac{1} {9}

\displaystyle \frac{1}{11}

\displaystyle -\frac{1}{11}

Correct answer:

\displaystyle \frac{1} {9}

Explanation:

\displaystyle p(x) = \frac{\left |x+2 \right |-1}{\left |x+1 \right |-2}, or, equivalently,

\displaystyle p(x) =\left ( \left |x+2 \right |-1 \right ) \div \left ( \left |x+1 \right |-2 \right )

\displaystyle p\left (-1 \frac{1}{5} \right )=\left ( \left |-1 \frac{1}{5}+2 \right |-1 \right ) \div \left ( \left |-1 \frac{1}{5}+1 \right |-2 \right )

\displaystyle =\left ( \left | \frac{4}{5} \right |-1 \right ) \div \left ( \left |- \frac{1}{5} \right |-2 \right )

\displaystyle =\left ( \frac{4}{5} -1 \right ) \div \left ( \frac{1}{5} -2 \right )

\displaystyle = - \frac{1}{5} \div \left ( - \frac{9}{5} \right )

\displaystyle = \frac{1}{5} \div \frac{9}{5}

\displaystyle = \frac{1}{5} \times \frac{5}{9}

\displaystyle = \frac{1} {9}

Example Question #31 : Algebra

Define an operation \displaystyle \triangleright as follows:

For all real numbers \displaystyle a,b,

\displaystyle a \triangleright b = \left | a- \frac{1}{2}b\right | + \left | \frac{1}{2} a+b\right |

Evaluate \displaystyle \frac{1}{3} \triangleright 4.

Possible Answers:

\displaystyle 1\frac{1}{2}

\displaystyle 5 \frac{5}{6}

\displaystyle 6\frac{1}{2}

\displaystyle \text{None of the other responses are correct.}

\displaystyle 2\frac{1}{2}

Correct answer:

\displaystyle 5 \frac{5}{6}

Explanation:

\displaystyle a \triangleright b = \left | a- \frac{1}{2}b\right | + \left | \frac{1}{2} a+b\right |

\displaystyle \frac{1}{3} \triangleright 4 = \left | \frac{1}{3} - \frac{1}{2} \cdot 4\right | + \left | \frac{1}{2} \cdot \frac{1}{3} +4\right |

\displaystyle = \left | \frac{1}{3} - 2\right | + \left | \frac{1}{6} +4\right |

\displaystyle = \left | -1 \frac{2}{3} \right | + \left | 4 \frac{1}{6} \right |

\displaystyle = 1 \frac{2}{3} + 4 \frac{1}{6}

\displaystyle = 5 \frac{5}{6}

Example Question #11 : How To Find Absolute Value

Define \displaystyle g(x)= \left | \left | 1,000- \sqrt{x}\right | - x^{3} \right |.

Evaluate \displaystyle g(16).

Possible Answers:

Correct answer:

Explanation:

\displaystyle g(x)= \left | \left | 1,000- \sqrt{x}\right | - x^{3} \right |

\displaystyle g(16)= \left | \left | 1,000- \sqrt{16}\right | - 16^{3} \right |

\displaystyle = \left | \left | 1,000- 4 \right | - 16^{3} \right |

\displaystyle = \left | \left | 996 \right | - 16^{3} \right |

\displaystyle = \left | 996 - 16^{3} \right |

\displaystyle = \left | 996 - 4,096 \right |

\displaystyle = \left | -3,100 \right |

\displaystyle =3,100

Example Question #31 : Algebra

Define an operation  as follows:

For all real numbers \displaystyle a,b,

Evaluate 

Possible Answers:

\displaystyle 11

\displaystyle 27

\displaystyle 17

Both \displaystyle 11 and \displaystyle -11

\displaystyle -11

Correct answer:

\displaystyle 11

Explanation:

\displaystyle = \left |-8- (-14) + 5 \right |

\displaystyle = \left |-8+14 + 5 \right |

\displaystyle = \left |11 \right |

\displaystyle = 11

Example Question #31 : Algebra

Given: \displaystyle a,b,c are distinct integers such that:

\displaystyle |a|< b < |c|

\displaystyle a+|b| = |c|

Which of the following could be the least of the three?

Possible Answers:

\displaystyle a or \displaystyle b only

\displaystyle a\displaystyle b, or \displaystyle c

\displaystyle b or \displaystyle c only

\displaystyle a or \displaystyle c only

\displaystyle b only

Correct answer:

\displaystyle a or \displaystyle c only

Explanation:

\displaystyle 0 \le |a|< b < |c|, which means that \displaystyle b must be positive. 

If \displaystyle a is nonnegative, then \displaystyle a = |a| < b. If \displaystyle a is negative, then it follows that \displaystyle a < 0 < b. Either way, \displaystyle a < b. Therefore, \displaystyle b cannot be the least. 

We now show that we cannot eliminate \displaystyle a or \displaystyle c as the least.

 

For example, if \displaystyle a = 4, b= 6, c = 10, then \displaystyle a is the least;  we test both statements:

\displaystyle |a|< b < |c|

\displaystyle |4|< 6 < |10|

\displaystyle 4 < 6< 10, which is true.

 

\displaystyle a+|b| = |c|

\displaystyle 4+|6| = |10|

\displaystyle 4+6 =10, which is also true.

 

If \displaystyle a = 4, b= 6, c = - 10, then \displaystyle c is the least; we test both statements:

\displaystyle |a|< b < |c|

\displaystyle |4|< 6 < |-10|

\displaystyle 4 < 6< 10, which is true.

 

\displaystyle a+|b| = |c|

\displaystyle 4+|6| = |-10|

\displaystyle 4+6 =10, which is also true.

 

Therefore, the correct response is \displaystyle a or \displaystyle c only.

Example Question #33 : Algebra

\displaystyle a\displaystyle b, and \displaystyle c are distinct integers. \displaystyle |a|< b and \displaystyle |b| < c. Which of the following could be the greatest of the three?

Possible Answers:

\displaystyle b only

\displaystyle a only

\displaystyle a\displaystyle b, or \displaystyle c

\displaystyle c only

None of the other responses is correct.

Correct answer:

\displaystyle c only

Explanation:

\displaystyle 0 \le |a|< b, so \displaystyle b must be positive. Therefore, since \displaystyle 0 \le |b| < c, equivalently, \displaystyle 0 < b < c, so \displaystyle c must be positive, and

\displaystyle |a|< b < c

If \displaystyle a is negative or zero, it is the least of the three. If \displaystyle a is positive, then the statement becomes

\displaystyle a < b < c,

and \displaystyle a is still the least of the three. Therefore, \displaystyle c must be the greatest of the three.

Example Question #11 : How To Find Absolute Value

Give the solution set:

\displaystyle |x- 6| > 17

Possible Answers:

\displaystyle (-\infty, -11) \cup (23, \infty)

\displaystyle (-\infty, -11) \cup (11, \infty)

\displaystyle (-\infty, -23) \cup (23, \infty)

\displaystyle (-\infty,-23 ) \cup (11, \infty)

\displaystyle (-\infty,-23 ) \cup (-11, \infty)

Correct answer:

\displaystyle (-\infty, -11) \cup (23, \infty)

Explanation:

If \displaystyle |x- 6| > 17, then either \displaystyle x -6 > 17 or \displaystyle x- 6 < -17. Solve separately:

\displaystyle x -6 > 17

\displaystyle x -6 + 6 > 17 + 6

\displaystyle x> 23

or 

\displaystyle x- 6 < -17

\displaystyle x- 6 + 6< -17 + 6

\displaystyle x< -11

The solution set, in interval notation, is \displaystyle (-\infty, -11) \cup (23, \infty).

Example Question #31 : Algebra

Define an operation  on the real numbers as follows:

If \displaystyle a > b, then 

If \displaystyle a = b, then 

If \displaystyle a< b, then 

If , and 

then which of the following is a true statement?

Possible Answers:

\displaystyle p < q = r

\displaystyle r < p = q

\displaystyle p = q = r

\displaystyle q = r< p

\displaystyle p = q < r

Correct answer:

\displaystyle p = q < r

Explanation:

Since \displaystyle 0 < 5, evaluate

, setting  \displaystyle a = 0, b=5:

 

Since \displaystyle 0 = 0, then select the pattern

 

Since \displaystyle 0 > -5, evaluate

, setting \displaystyle a = 0, b=-5:

 

\displaystyle p = q= 4, r = 6, so the correct choice is that \displaystyle p = q < r.

 

 

 

Example Question #36 : Algebra

Given: \displaystyle m,n,p are distinct integers such that:

\displaystyle |m|< n < |p|

\displaystyle |m|+n = p

Which of the following could be the least of the three?

Possible Answers:

\displaystyle n only

\displaystyle m\displaystyle n, or \displaystyle p

\displaystyle p only

\displaystyle m or \displaystyle n only

\displaystyle m only

Correct answer:

\displaystyle m only

Explanation:

\displaystyle 0 \le |m|< n < |p|, which means that \displaystyle n must be positive. 

If \displaystyle m is nonnegative, then \displaystyle m = |m| < n. If \displaystyle m is negative, then it follows that \displaystyle m < 0 < n. Either way, \displaystyle m < n. Therefore, \displaystyle n cannot be the least. 

Now examine the statemtn \displaystyle |m|+n = p. If \displaystyle m = 0, then \displaystyle n = p - but we are given that \displaystyle n and \displaystyle p are distinct. Therefore, \displaystyle m is nonzero, \displaystyle |m| > 0, and 

\displaystyle |m| +n > 0 + n

and

\displaystyle p > n.

\displaystyle p cannot be the least either.

Learning Tools by Varsity Tutors