SSAT Middle Level Math : How to divide variables

Study concepts, example questions & explanations for SSAT Middle Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : How To Divide Variables

Solve for the variable:

 \(\displaystyle 4x+5=21\)

Possible Answers:

\(\displaystyle x=26\)

There is not enough information to answer this question.

\(\displaystyle x=5\)

\(\displaystyle x=21\)

\(\displaystyle x=4\)

Correct answer:

\(\displaystyle x=4\)

Explanation:

In order to answer this question, you must isolate \(\displaystyle x\) on one side of the equation.

\(\displaystyle 4x+5=21\) (Subtract \(\displaystyle 5\) from both sides.)    

\(\displaystyle 4x=16\)                

\(\displaystyle \frac{4x}{4}=\frac{16}{4}\)                  

\(\displaystyle x=4\)

 

 

Example Question #112 : Variables

If \(\displaystyle y=12\) and \(\displaystyle z=3\), then \(\displaystyle \frac{y}{z}\) is equal to: 

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle \frac{1}{4}\)

\(\displaystyle \frac{1}{3}\)

\(\displaystyle 3\)

\(\displaystyle 4\)

Correct answer:

\(\displaystyle 4\)

Explanation:

If \(\displaystyle y=12\) and \(\displaystyle z=3\), then when plugging the variables into the fractional form of  \(\displaystyle \frac{y}{z}\), the result is \(\displaystyle \frac{12}{3}\), which is equal to 4, which is therefore the correct answer. 

Example Question #3 : How To Divide Variables

Solve for the variable:

\(\displaystyle 3x+6=15\)

Possible Answers:

\(\displaystyle x=1\)

\(\displaystyle x=2\)

\(\displaystyle x=4\)

\(\displaystyle x=6\)

\(\displaystyle x=3\)

Correct answer:

\(\displaystyle x=3\)

Explanation:

In order to answer this question, you must isolate \(\displaystyle x\) on one side of the equation.

\(\displaystyle 3x+6=15\) (Subtract \(\displaystyle 6\) from both sides.)

\(\displaystyle 3x = 9\)

\(\displaystyle \frac{3x}{3}=\frac{9}{3}\)

\(\displaystyle x=3\)

Example Question #113 : Variables

If \(\displaystyle y=30\) and \(\displaystyle x=5\), then \(\displaystyle \frac{y}{x}\) is equal to:

Possible Answers:

\(\displaystyle 6\)

\(\displaystyle 5\)

\(\displaystyle 4\)

\(\displaystyle 30.5\)

\(\displaystyle \frac{6}{5}\)

Correct answer:

\(\displaystyle 6\)

Explanation:

If \(\displaystyle y=30\) and \(\displaystyle x=5\), then when plugging the variables into the fractional form of:

 \(\displaystyle \frac{y}{x}=\frac{30}5\)

\(\displaystyle \frac{30}{5}=\frac{6}{1}=6\)

Example Question #2 : How To Divide Variables

Simpify the expression.

\(\displaystyle \frac{24abcdefg}{24abcdefgh}\)

Possible Answers:

\(\displaystyle \frac{abcdefg}{abcdefgh}\)

\(\displaystyle \frac{abcdefg}{h}\)

\(\displaystyle \frac{1}{h}\)

\(\displaystyle \frac{24}{h}\)

\(\displaystyle \frac{1}{abcdefgh}\)

Correct answer:

\(\displaystyle \frac{1}{h}\)

Explanation:

To solve this problem you can cancel out like terms in the numerator and denominator. For example,

\(\displaystyle \frac{24}{24}=1\)

\(\displaystyle \frac{a}{a}=1\)

So,

\(\displaystyle \frac{24\cdot a\cdot b\cdot c\cdot d\cdot e\cdot f\cdot g}{24\cdot a\cdot b\cdot c\cdot d\cdot e\cdot f\cdot g\cdot h}=\frac{1}{h}\)

All the other terms cancel each other out because they are equal to one.

Learning Tools by Varsity Tutors