SSAT Elementary Level Math : Plane Geometry

Study concepts, example questions & explanations for SSAT Elementary Level Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #511 : Rectangles

Find the perimeter of the rectangle.

A rectangle has a length of 12cm and a width of 4cm. What is the perimeter of this rectangle.

Possible Answers:

\displaystyle 48cm^{2}

\displaystyle 32cm

\displaystyle 16cm

\displaystyle 16cm^{2}

\displaystyle 32cm^{2}

Correct answer:

\displaystyle 32cm

Explanation:

To find the perimeter of a rectangle, you must first understand that a rectangle's opposite sides are equal. Therefore if you know the length of one side it is the identical length of the opposite side.

\displaystyle 12cm + 12cm = 24cm

\displaystyle 4cm +4cm=8cm

\displaystyle 24cm+8cm=32cm

32cm is your answer.

Example Question #581 : Geometry

Find the perimeter of a rectangle.

A rectangle has a width of 7cm and a length of 10cm. What is the perimeter of the rectangle?

Possible Answers:

\displaystyle 34cm

\displaystyle 34cm^{2}

\displaystyle 70cm^{2}

\displaystyle 17cm^{2}

\displaystyle 17cm

Correct answer:

\displaystyle 34cm

Explanation:

First you need to understand that opposite sides of a rectangle are equal. Then you are able to add the value of each side to itself and then add your sums together to get the perimeter of a rectangle.

\displaystyle 10cm+10cm=20cm

\displaystyle 7cm+7cm=14cm

\displaystyle 20cm+14cm=34cm

Example Question #582 : Geometry

Use the following rectangle to answer the question:

Rectangle1

Find the perimeter.

Possible Answers:

\displaystyle 9\text{in}^2

\displaystyle 18\text{in}^2

\displaystyle \text{There is not enough information to solve the problem.}

\displaystyle 18\text{in}

\displaystyle 9\text{in}

Correct answer:

\displaystyle 18\text{in}

Explanation:

To find the perimeter of a rectangle, we will use the following formula:

\displaystyle \text{perimeter of rectangle} = a+b+c+d

Where a, b, c, and d are the lengths of the sides of the rectangle.

 

Now, let's look at the rectangle.

Rectangle1

We can see the length is 6in.  Because it is a rectangle, the opposite side is also 6in. 

We can also see the width of the rectangle is 3in. Because it is a rectangle, the opposite side is also 3in.

Knowing this, we can substitute into the formula.  We get

\displaystyle \text{perimeter of rectangle} = 6\text{in} + 6\text{in} + 3\text{in} + 3\text{in}

\displaystyle \text{perimeter of rectangle} = 18\text{in}

Example Question #583 : Geometry

Use the following rectangle to solve the problem:

Rectangle2

Find the perimeter.

Possible Answers:

\displaystyle 32\text{in}

\displaystyle 22\text{in}

\displaystyle 46\text{in}

\displaystyle 16\text{in}

\displaystyle 55\text{in}

Correct answer:

\displaystyle 32\text{in}

Explanation:

To find the perimeter of a rectangle, we will use the following formula:

\displaystyle P = a+b+c+d

Where a, b, c, and d are the lengths of the sides of the rectangle.

 

Now, given the rectangle

Rectangle2

we can see the length is 11in.  Because it is a rectangle, the opposite side is also 11in.

The width is 5in.  Because it is a rectangle, the opposite side is also 5in.

So, we can substitute.

\displaystyle P = 11\text{in} + 11\text{in} + 5\text{in} + 5\text{in}

\displaystyle P = 32\text{in}

Example Question #581 : Plane Geometry

What is the width of the rectangle if the perimeter is \displaystyle 10in and the length is \displaystyle 2in?

Possible Answers:

\displaystyle 3in

\displaystyle 4in

\displaystyle 5in

\displaystyle 7in

\displaystyle 6in

Correct answer:

\displaystyle 3in

Explanation:

The formula for perimeter of a rectangle is \displaystyle P=2(l + w)

To solve for the width we can plug our known values into the equation. 

\displaystyle 10=2(2+w)

\displaystyle 10=4+2w

Subtract \displaystyle 4 from both sides

\displaystyle 6=2w

Divide \displaystyle 2 by both sides

\displaystyle 3=w

Example Question #211 : Measurement & Data

What is the length of a room with a perimeter of \displaystyle 54ft and a width of \displaystyle 17ft?

Possible Answers:

\displaystyle 7ft

\displaystyle 10ft

\displaystyle 6ft

\displaystyle 8ft

\displaystyle 9ft

Correct answer:

\displaystyle 10ft

Explanation:

\displaystyle P=2l+ 2w

We have the perimeter and the width, so we can plug those values into our equation and solve for our unknown. 

\displaystyle 54=2l+2(17)

\displaystyle 54=2l+34

Subtract \displaystyle 34 from both sides

\displaystyle 54-34=2l+34-34

\displaystyle 20=2l

Divide \displaystyle 2 by both sides

\displaystyle \frac{20}{2}=\frac{2l}{2}

\displaystyle 10=l

Example Question #581 : Plane Geometry

Emily is digging a garden in her backyard that is \displaystyle 7 meters long and \displaystyle 4 meters wide. What is the perimeter of her garden? 

Possible Answers:

\displaystyle 26m

\displaystyle 25m

\displaystyle 23m

\displaystyle 24m

\displaystyle 22m

Correct answer:

\displaystyle 22m

Explanation:

The formula for perimeter of a rectangle is \displaystyle P=2(l + w)

To solve for the perimeter we can plug our known values into the equation. 

\displaystyle P=2(7+4)

\displaystyle P=2(11)

\displaystyle P=22

Example Question #141 : How To Find The Area Of A Parallelogram

Angela has a garden that she wants to put a fence around. How much fencing will she need if her garden is \displaystyle 6ft by \displaystyle 3ft?

 

Possible Answers:

\displaystyle 16ft

\displaystyle 18ft

\displaystyle 19ft

\displaystyle 17ft

\displaystyle 20ft

Correct answer:

\displaystyle 18ft

Explanation:

The fence is going around the garden, so this is a perimeter problem. 

\displaystyle P=2l+2w

\displaystyle P=2(6)+2(3)

\displaystyle P=12+6

\displaystyle P=18

Example Question #151 : How To Find The Perimeter Of A Rectangle

David wants to put a fence around a garden in his backyard. How much fencing will he need if his garden is \displaystyle 5ft by \displaystyle 4ft?

Possible Answers:

\displaystyle 20ft

\displaystyle 17ft

\displaystyle 16ft

\displaystyle 18ft

\displaystyle 9ft

Correct answer:

\displaystyle 18ft

Explanation:

The fence is going around the backyard, so this is a perimeter problem. 

\displaystyle P=2l+2w

\displaystyle P=2(5)+2(4)

\displaystyle P=10+8

\displaystyle P=18

Example Question #1 : Triangles

The altitude of a triangle is given as \displaystyle a = 10, and its base as \displaystyle 3a. What is the area of the triangle? 

Possible Answers:

\displaystyle 200

\displaystyle 150

\displaystyle 40

\displaystyle 400

\displaystyle 300

Correct answer:

\displaystyle 150

Explanation:

The area of a triangle is given by \displaystyle 0.5\times altitude\times base.

altitude \displaystyle = 10

base \displaystyle = 3\times a = \displaystyle 30

Therefore:

Area \displaystyle = 0.5\times10\times30 = 150

Learning Tools by Varsity Tutors