Set Theory : Set Theory

Study concepts, example questions & explanations for Set Theory

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Natural Numbers, Integers, And Real Numbers

What is the correct expression of the relationships between the sets comprised of natural numbers, real numbers, and integers?

Possible Answers:

\displaystyle \mathbb{N}\subseteq\mathbb{Z}=\mathbb{R}

\displaystyle \mathbb{N}=\mathbb{Z}\subseteq \mathbb{R}

\displaystyle \mathbb{Z}\subseteq\mathbb{N}\subseteq \mathbb{R}

\displaystyle \mathbb{R}\subseteq\mathbb{Z}\subseteq \mathbb{N}

\displaystyle \mathbb{N}\subseteq\mathbb{Z}\subseteq \mathbb{R}

Correct answer:

\displaystyle \mathbb{N}\subseteq\mathbb{Z}\subseteq \mathbb{R}

Explanation:

The natural numbers are defined as \displaystyle \mathbb{N}=\left \{ 0,1,2,3,...\right \}, the integers are defined as \displaystyle \mathbb{Z}=\left \{ ...-3,-2,-1,0,1,2,3,...\right \}, and the real numbers (\displaystyle \mathbb{R}) are defined as the set of all non-complex numbers. As such, \displaystyle \mathbb{N} is a subset of \displaystyle \mathbb{Z}, and \displaystyle \mathbb{Z} is a subset of \displaystyle \mathbb{R}.

 

Example Question #1 : Well Orderings And Transfinite Induction

Determine if the following statement is true or false:

Let \displaystyle A_1 and \displaystyle A_2 be well ordered and order isomorphic sets. If \displaystyle B_1 and \displaystyle B_2 are also order isomorphic sets, then \displaystyle A_1\times B_1 and \displaystyle A_2\times B_2 are also order isomorphic.

Possible Answers:

False

True

Correct answer:

True

Explanation:

This is a theorem for well ordered sets and the proof is as follows.

First identify what is given in the statement.

1. The sets are onto order isomorphisms

\displaystyle f:A_1\rightarrow A_2 and \displaystyle g:B_1\rightarrow B_2

2. The goal is to make an onto order isomorphism. Let us call it \displaystyle t.

\displaystyle t:A_1\times B_1 \rightarrow A_2\times B_2

Thus, \displaystyle t can be defined as the function,

\displaystyle \\t:A_1\times B_1\rightarrow A_2\times B_2 \\t(a,b)=(f(a),g(b))

To show \displaystyle t is a well defined, one-to-one,  function on \displaystyle A_1\times B_1 since \displaystyle f and \displaystyle g are one-to-one, the following is performed.

\displaystyle t(a,b)=t(u,v)\Rightarrow(f(a),g(b))=(f(u),g(v))

                                \displaystyle \\\Rightarrow f(a)=f(u), g(b)=g(v) \\\Rightarrow a=u, b=v \\\Rightarrow (a,b)=(u,v)

Thus, \displaystyle t is one-to-one.

Now to prove \displaystyle t in onto \displaystyle A_2\times B_2 if \displaystyle (a,b)\ \epsilon\ A_2\times B_2 

\displaystyle a=f(u), b=g(v)

for some

\displaystyle u\ \epsilon\ A_1, v\ \epsilon\ B_1

thus

\displaystyle t(u,v)=(a,b)

proving \displaystyle t is onto \displaystyle A_2 \times B_2.

Lastly prove ordering.

\displaystyle (a_1,b_1)\leq_{A\times B}(a_2,b_2)\Leftrightarrow \left\{\begin{matrix} a_1< _aa_2\\ a_1=a_2, b+1\leq_{r}b_2 \end{matrix}\right.

                                             \displaystyle \Leftrightarrow\left\{\begin{matrix} f(a_1)< _{A}f(a_2)\\ f(a_1)=f(a_2), g(b_1\leq_{r}g(b_2)) \end{matrix}\right.

                                             \displaystyle \Leftrightarrow\left\{\begin{matrix} (f(a_1),g(b_1))< _{A\times B}(f(a_2),g(b_2))\\ (f(a_1),g(b_1))\leq(f(a_2), g(b_2)) \end{matrix}\right.

Thus proving \displaystyle t is isomorphic. Therefore the statement is true.

Example Question #1 : Cardinal Numbers

Given the set \displaystyle A, calculate the cardinality.

\displaystyle A=\begin{Bmatrix} 3,7,5,4,9,11,24 \end{Bmatrix}

Possible Answers:

\displaystyle |A|=9

\displaystyle |A|=7

\displaystyle |A|=11

\displaystyle |A|=8

\displaystyle |A|=21

Correct answer:

\displaystyle |A|=7

Explanation:

Given a set \displaystyle W, the cardinality is the number of elements in \displaystyle W. This is also written as \displaystyle |W|.

Looking at this particular problem, 

\displaystyle A=\begin{Bmatrix} 3,7,5,4,9,11,24 \end{Bmatrix}

Therefore the number of elements in a is,

\displaystyle |A|=7

Example Question #2 : Cardinal Numbers

Given the set \displaystyle A, calculate the cardinality.

\displaystyle A=\begin{Bmatrix} a,a,b,c,d,e,e \end{Bmatrix}

Possible Answers:

\displaystyle |A|=\frac{a+e}{7}

\displaystyle |A|=5

\displaystyle |A|=c

\displaystyle |A|=a

\displaystyle |A|=7

Correct answer:

\displaystyle |A|=5

Explanation:

Given a set \displaystyle W, the cardinality is the number of elements in \displaystyle W. This is also written as \displaystyle |W|.

Looking at this particular problem, 

\displaystyle A=\begin{Bmatrix} a,a,b,c,d,e,e \end{Bmatrix}

First, rewrite the set to depict a more accurate description of the space.

\displaystyle A=\begin{Bmatrix} a,b,c,d,e \end{Bmatrix}

Therefore, counting up the number of elements, results in the following cardinality,

\displaystyle |A|=5

Learning Tools by Varsity Tutors