SAT Math : SAT Mathematics

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #2401 : Sat Mathematics

Remember that \displaystyle i= \sqrt{-1}.

Simplify: \displaystyle (2+3i)(1-i)

Possible Answers:

\displaystyle -1+5i

\displaystyle -1+i

\displaystyle -1-i

\displaystyle 5-i

\displaystyle 5+i

Correct answer:

\displaystyle 5+i

Explanation:

Use FOIL to multiply complex numbers as follows:

\displaystyle (2+3i)(1-i)

\displaystyle 2-2i+3i-3i^2

Since \displaystyle i= \sqrt{-1}, it follows that \displaystyle i^2 = -1, so then:

\displaystyle 2-2i+3i-3 \cdot (-1)

\displaystyle 2-2i+3i+3

Combining like terms gives:

\displaystyle 5+i

Example Question #2401 : Sat Mathematics

Simplify: \displaystyle (3+2i)(3-2i)

Possible Answers:

\displaystyle 13

\displaystyle 5

\displaystyle 5-12i

\displaystyle 13-12i

Correct answer:

\displaystyle 13

Explanation:

Use FOIL:

\displaystyle (3+2i)(3-2i)=9-6i+6i-4i^2

Combine like terms:

\displaystyle =9-4i^2

But since \displaystyle i^2=-1, we know

\displaystyle 9-4i^2=9-4 \cdot (-1)=9+4=13

Example Question #49 : Squaring / Square Roots / Radicals

\displaystyle x = 5+ i \sqrt{7}\displaystyle y is the complex conjugate of \displaystyle x.

Evaluate 

\displaystyle x^{2} - 2xy + y^{2}.

Possible Answers:

\displaystyle 100

\displaystyle 28

\displaystyle -100

\displaystyle -28

Correct answer:

\displaystyle -28

Explanation:

\displaystyle x^{2} - 2xy + y^{2} conforms to the perfect square trinomial pattern

\displaystyle x^{2} - 2xy + y^{2} = (x-y) ^{2}.

The easiest way to solve this problem is to subtract \displaystyle x and \displaystyle y, then square the difference. 

The complex conjugate of a complex number \displaystyle a+bi is \displaystyle a-bi.

\displaystyle x = 5+ i \sqrt{7},

so \displaystyle y is the complex conjugate of this; 

\displaystyle x = 5- i \sqrt{7}

\displaystyle x-y = (5+ i \sqrt{7}) - (5- i \sqrt{7}) = 5- 5 +i \sqrt{7}+ i \sqrt{7} = 2i \sqrt{7}

\displaystyle x^{2} - 2xy + y^{2} = (x-y) ^{2}

\displaystyle =( 2i \sqrt{7} )^{2}

Taking advantage of the Power of a Product Rule and the fact that \displaystyle i^{2} = -1:

\displaystyle = 2^{2} \cdot i ^{2}\cdot (\sqrt{7}) ^{2}

\displaystyle =4 \cdot (-1 )\cdot 7

\displaystyle = -28

Example Question #211 : Exponents

Raise \displaystyle 7+2i to the fourth power.

Possible Answers:

\displaystyle 2,809 +2,520 i

None of these

\displaystyle 2,025+2,968i

\displaystyle 3,593+2,968i

\displaystyle 1,241 +2,520 i

Correct answer:

\displaystyle 1,241 +2,520 i

Explanation:

By the Power of a Power Rule, the fourth power of any number is equal to the square of the square of that number:

\displaystyle x^{4} = x ^{2 \cdot 2} =( x^{2})^{2}

Therefore, one way to raise \displaystyle 7+2i to the fourth power is to square it, then to square the result.

Using the binomial square pattern to square \displaystyle 7+2i:

\displaystyle (7+2i)^{2} = 7^{2} + 2 \cdot 7 \cdot 2i + (2i ) ^{2}

Applying the Power of a Product Property:

\displaystyle (7+2i)^{2} = 7^{2} + 2 \cdot 7 \cdot 2i + 2^{2} \cdot i ^{2}

Since \displaystyle i^{2} = -1 by definition: 

\displaystyle (7+2i)^{2} = 7^{2} + 2 \cdot 7 \cdot 2i + 2^{2} \cdot (-1)

\displaystyle = 49 + 28i -4

\displaystyle = 45 + 28i

Square this using the same steps:

\displaystyle (45 + 28i )^{2} = 45 ^{2} + 2 \cdot 45 \cdot 28 i + (28 i) ^{2}

\displaystyle = 45 ^{2} + 2 \cdot 45 \cdot 28 i + 28^{2} i ^{2}

\displaystyle = 45 ^{2} + 2 \cdot 45 \cdot 28 i + 28^{2} (-1)

\displaystyle = 2,025 +2,520 i -784

\displaystyle = 1,241 +2,520 i

Example Question #51 : Squaring / Square Roots / Radicals

Raise \displaystyle 8 - 3i to the fourth power.

Possible Answers:

\displaystyle 7,633 - 7,008i

None of these

\displaystyle 721-5,280 i

\displaystyle 3,025 - 7,008i

\displaystyle 5,329-5,280 i

Correct answer:

\displaystyle 721-5,280 i

Explanation:

The easiest way to find \displaystyle (8 - 3i)^{4} is to note that  

 \displaystyle (8 - 3i)^{4} =[ (8 - 3i)^{2} ]^{2}.

Therefore, we can find the fourth power of \displaystyle 8 - 3i by squaring \displaystyle 8 - 3i, then squaring the result.

Using the binomial square pattern to square \displaystyle 8 - 3i:

\displaystyle (8 - 3i)^{2} = 8^{2} - 2 \cdot 8 \cdot 3i + (3i)^{2}

Applying the Power of a Product Property:

\displaystyle (8 - 3i)^{2} = 8^{2} - 2 \cdot 8 \cdot 3i + 3^{2} \cdot i^{2}

Since \displaystyle i^{2} = -1 by definition: 

\displaystyle (8 - 3i)^{2} = 64 - 48 i + 9 (-1)

\displaystyle = 64 - 48 i -9

\displaystyle = 55 - 48 i

Square this using the same steps:

\displaystyle ( 55 - 48 i )^{2} = 55^{2} - 2 \cdot 55 \cdot 48 i + (48i)^{2}

\displaystyle = 3,025-5,280 i + 48^{2} i^{2}

\displaystyle = 3,025-5,280 i + 2,304(-1)

\displaystyle = 3,025-5,280 i - 2,304

\displaystyle = 721-5,280 i

Therefore, \displaystyle (8 - 3i)^{4} = 721-5,280 i

 

Example Question #211 : Exponents

Raise \displaystyle 5+4i to the third power.

Possible Answers:

\displaystyle 365 + 236i

\displaystyle -115 + 236i

\displaystyle -115 + 364i

\displaystyle 365 + 364i

None of these

Correct answer:

\displaystyle -115 + 236i

Explanation:

To raise any expression \displaystyle A+B to the third power, use the pattern

\displaystyle \left (A+B \right )^{3} = A^{3} + 3A^{2} B + 3 AB^{2} + B^{3}

Setting \displaystyle A = 5, B = 4i:

\displaystyle (5+4i)^{3} = 5^{3} + 3\cdot 5^{2} \cdot 4i + 3 \cdot 5 \cdot (4i)^{2} + (4i)^{3}

Taking advantage of the Power of a Product Rule:

\displaystyle (5+4i)^{3} = 5^{3} + 3\cdot 5^{2} \cdot 4i + 3 \cdot 5 \cdot 4^{2} \cdot i^{2} +4 ^{3} \cdot i ^{3}

Since \displaystyle i^{2} = -1 and \displaystyle i^{3} = i^{2} \cdot i = -1 \cdot i = -i:

\displaystyle (5+4i)^{3} = 125 + 3\cdot 25 \cdot 4 i + 3 \cdot 5 \cdot 16 \cdot (-1) +64 \cdot (- i )

\displaystyle (5+4i)^{3} = 125+ 300i -240 -64i

Collecting real and imaginary terms:

\displaystyle (5+4i)^{3} = 125 -240 + 300i -64i

\displaystyle (5+4i)^{3} = -115 + 236i

 

Example Question #2401 : Sat Mathematics

Evaluate: 

\displaystyle i^{-31}

Possible Answers:

\displaystyle -i

The expression is undefined

\displaystyle -1

\displaystyle i

\displaystyle 1

Correct answer:

\displaystyle i

Explanation:

\displaystyle a^{-m} is defined to be equal to \displaystyle \frac{1}{a^{m}} for any real or imaginary \displaystyle a and for any real \displaystyle m; therefore,

\displaystyle i^{-31} = \frac{1}{i^{31}}

To evaluate a positive power of \displaystyle i, divide the power by 4 and note the remainder:

\displaystyle 31 \div 4= 7 \textrm{ R }3

Therefore, 

\displaystyle i ^{31} = i ^{3} = -i

Substituting,

\displaystyle i^{-31} = \frac{1}{-i}

Rationalizing the denominator by multiplying both numerator and denominator by \displaystyle i:

\displaystyle i^{-31} = \frac{1 \cdot i}{-i \cdot i }= \frac{ i}{-i ^{2}}= \frac{ i}{-(-1)}= \frac{ i}{1}= i

 

Example Question #221 : Exponents

Solve for \displaystyle x.

2^{x}= 64\displaystyle 2^{x}= 64

Possible Answers:

\displaystyle x=-6

\displaystyle x=6

\displaystyle x=5

\displaystyle x=64^{2}

\displaystyle x=64

Correct answer:

\displaystyle x=6

Explanation:

Since 2^{x}= 2^{6}\displaystyle 2^{x}= 2^{6}

Hence \displaystyle x=6

Example Question #222 : Exponents

Simplify:

 

\displaystyle \sqrt[3]{x^{10}y^{8}z^{9}}

Possible Answers:

\displaystyle x^{3}y^{3}z^{3}

\displaystyle x^{3}y^{2}z^{3}

\displaystyle \sqrt[3]{xy^{2}}

\displaystyle x^{3}y^{2}z^{3}\sqrt[3]{xy^{2}}

Correct answer:

\displaystyle x^{3}y^{2}z^{3}\sqrt[3]{xy^{2}}

Explanation:

\displaystyle \sqrt[3]{x^{9}xy^{6}y^{2}z^{9}}=x^{3}y^{2}z^{3}\sqrt[3]{xy^{2}}

Example Question #223 : Exponents

Solve for \displaystyle x:

\displaystyle \sqrt{x} -1= 4

Possible Answers:

\displaystyle 5

\displaystyle 25

\displaystyle 9

\displaystyle 5

\displaystyle 36

Correct answer:

\displaystyle 25

Explanation:

From the equation one can see that

\displaystyle \sqrt{x} = 5

Hence \displaystyle x must be equal to 25.

Learning Tools by Varsity Tutors