SAT Math : SAT Mathematics

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #2 : Complex Numbers

An arithmetic sequence begins as follows:

Give the next term of the sequence 

Possible Answers:

Correct answer:

Explanation:

The common difference  of an arithmetic sequence can be found by subtracting the first term from the second:

Add this to the second term to obtain the desired third term:

.

Example Question #3 : Complex Numbers

Simplify: 

Possible Answers:

Correct answer:

Explanation:

It can be easier to line real and imaginary parts vertically to keep things organized, but in essence, combine like terms (where 'like' here means real or imaginary):

Example Question #1 : Complex Numbers

For , what is the sum of  and its complex conjugate?

Possible Answers:

Correct answer:

Explanation:

The complex conjugate of a complex number  is , so  has  as its complex conjugate. The sum of the two numbers is

Example Question #3 : How To Add Complex Numbers

Evaluate: 

Possible Answers:

None of these

Correct answer:

Explanation:

A power of  can be evaluated by dividing the exponent by 4 and noting the remainder. The power is determined according to the following table:

, so 

, so 

, so 

, so 

Substituting:

Collect real and imaginary terms:

Example Question #3 : How To Add Complex Numbers

Evaluate: 

Possible Answers:

Correct answer:

Explanation:

A power of  can be evaluated by dividing the exponent by 4 and noting the remainder. The power is determined according to the following table:

, so 

, so 

, so 

, so 

Substituting: 

Example Question #11 : Complex Numbers

For which of the following values of  is the value of  least?

Possible Answers:

Correct answer:

Explanation:

   is the same as  , which means that the bigger the answer to  is, the smaller the fraction will be.

Therefore,  is the correct answer because 

.

Example Question #2 : How To Divide Complex Numbers

Define an operation  so that for any two complex numbers  and :

Evaluate .

Possible Answers:

Correct answer:

Explanation:

, so

Rationalize the denominator by multiplying both numerator and denominator by the complex conjugate of the latter, which is :

 

Example Question #602 : Algebra

Define an operation  such that, for any complex number 

If , then evaluate .

Possible Answers:

Correct answer:

Explanation:

, so

, so

, and

Rationalize the denominator by multiplying both numerator and denominator by the complex conjugate of the latter, which is :

Example Question #3 : How To Divide Complex Numbers

Define an operation  as follows:

For any two complex numbers  and ,

Evaluate .

Possible Answers:

Correct answer:

Explanation:

, so

We can simplify each expression separately by rationalizing the denominators.

 

 

Therefore, 

Example Question #11 : Complex Numbers

Define an operation  so that for any two complex numbers  and :

Evaluate 

Possible Answers:

Correct answer:

Explanation:

, so

Rationalize the denominator by multiplying both numerator and denominator by the complex conjugate of the latter, which is :

Learning Tools by Varsity Tutors