SAT Math : SAT Mathematics

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #5 : How To Add Exponents

Simplify.  All exponents must be positive.

\left ( x^{-2}y^{3} \right )\left ( x^{5}y^{-4} \right )

Possible Answers:

\left ( x^{-2}+x^{5} \right )\left ( y^{3}+y^{-4} \right )

Correct answer:

Explanation:

Step 1: \left ( x^{-2}x^{5} \right )= x^{3}

Step 2: \left ( y^{3}y^{-4} \right )= y^{-1}= \frac{1}{y}

Step 3: (Correct Answer): \frac{x^{3}}{y}

Example Question #6 : How To Add Exponents

Simplify.  All exponents must be positive.

Possible Answers:

\frac{y^{6}}{x^{5}}

x^{-5}y^{6}

x^{-1}y^{4}

\frac{1}{x^{5}y^{-6}}

\frac{\left ( xy \right )^{2}}{\left ( xy \right )}

Correct answer:

\frac{y^{6}}{x^{5}}

Explanation:

Step 1: \frac{y^{5}}{\left ( x^{3}x^{2} \right )\left \right )y^{-1}}

 

Step 2: \frac{\left ( y^{5}y^{1} \right )}{x^{3}x^{2}}

Step 3:\frac{y^{6}}{x^{5}}

Example Question #7 : How To Add Exponents

\frac{\left ( -11 \right )^{-8}}{\left ( -11\right )^{12}}

Answer must be with positive exponents only.

Possible Answers:

\frac{1}{\left ( -11 \right )^{20}}

\left ( 1 \right )^{-20}

\frac{1}{\left ( -11 \right )^{4}}

\left ( -11 \right )^{-20}

\left ( -11 \right )^{4}

Correct answer:

\frac{1}{\left ( -11 \right )^{20}}

Explanation:

Step 1:\frac{1}{\left ( -11 \right )^{12}\left ( -11 \right )^{8}}

Step 2: The above is equal to \frac{1}{\left ( -11 \right )^{20}}

Example Question #74 : Exponents

Evaluate:

 -\left ( -3 \right )^{0}-\left ( -3^{0} \right )

Possible Answers:

Correct answer:

Explanation:

-\left ( -3 \right )^{0}= -1

 

Example Question #9 : How To Add Exponents

Simplify:

Possible Answers:

Correct answer:

Explanation:

Similarly

 

So

Example Question #1 : How To Add Exponents

If , what is the value of ?

Possible Answers:

Correct answer:

Explanation:

Using exponents, 27 is equal to 33. So, the equation can be rewritten:

34+ 6 = (33)2x

34+ 6 = 36x

When both side of an equation have the same base, the exponents must be equal. Thus:

4x + 6 = 6x

6 = 2x

x = 3

Example Question #81 : Exponents

What is the value of  such that ?

Possible Answers:

Correct answer:

Explanation:

We can solve by converting all terms to a base of two. 4, 16, and 32 can all be expressed in terms of 2 to a standard exponent value.

We can rewrite the original equation in these terms.

Simplify exponents.

Finally, combine terms.

From this equation, we can see that .

Example Question #82 : Exponents

Solve for x:

Possible Answers:

10

9

11

6

8

Correct answer:

10

Explanation:

Combining the powers, we get 1024=2^{x}.

From here we can use logarithms, or simply guess and check to get x=10.

Example Question #82 : Exponents

Simplify:

Possible Answers:

Correct answer:

Explanation:

When multiplying exponents with the same base, we use the rules of exponents.

This means you must simply add the exponents together as shown below:

Example Question #6 : Exponential Operations

Simplify:  y3x4(yx3 + y2x2 + y15 + x22)

Possible Answers:

y3x12 + y6x8 + y45 + x88

2x4y4 + 7y15 + 7x22

y4x7 + y5x6 + y18x4 + y3x26

y3x12 + y12x8 + y24x4 + y3x23

y3x12 + y6x8 + y45x4 + y3x88

Correct answer:

y4x7 + y5x6 + y18x4 + y3x26

Explanation:

When you multiply exponents, you add the common bases:

y4 x7 + y5x6 + y18x4 + y3x26

Learning Tools by Varsity Tutors