SAT Math : SAT Mathematics

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #1 : How To Use The Inverse Variation Formula

The radius of the base of a cylinder is ; the height of the same cylinder is ; the cylinder has volume 1,000.

Which of the following is a true statement?

Assume all quantities are positive.

Possible Answers:

varies inversely as the square of .

varies inversely as .

varies directly as the square of .

varies inversely as the square root of .

varies dorectly as the square root of .

Correct answer:

varies inversely as .

Explanation:

The volume of a cylinder can be calculated from its height and the radius of its base using the formula:

, so ;

, so .

The volume is 1,000, and by substitution, using the other equations:

If we take as the constant of variation, we get

,

meaning that varies inversely as .

 

 

Example Question #3 : How To Use The Inverse Variation Formula

varies directly as the square of and the cube root of , and inversely as the fourth root of . Which of the following is a true statement?

Possible Answers:

varies directly as the square root of and the eighth root of , and inversely as the sixth power of .

varies directly as the square root of and the eighth root of , and inversely as the sixth root of .

varies directly as the square root of and the eighth power of , and inversely as the sixth root of .

varies directly as the square root of , and inversely as the eighth root of and the sixth root of .

 varies directly as the square root of , and inversely as the eighth power of  and the sixth power of .

Correct answer:

varies directly as the square root of and the eighth root of , and inversely as the sixth root of .

Explanation:

varies directly as the square of and the cube root of , and inversely as the fourth root of , so, for some constant of variation ,

We take the reciprocal of both sides, then extract the square root:

Taking as the constant of variation, we see that varies directly as the square root of and the eighth root of , and inversely as the sixth root of .

Example Question #1 : How To Use The Inverse Variation Formula

If  varies inversely as , and  when , find  when .

Possible Answers:

Correct answer:

Explanation:

The formula for inverse variation is as follows: 

Use the x and y values from the first part of the sentence to find k. 

Then use that k value and the given x value to find y.

 

Example Question #361 : Algebra

Find the degree of the polynomial:

Possible Answers:

Correct answer:

Explanation:

To find the degree of a polynomial we must find the largest exponent in the function.

The degree of the polynomial  is 5, as the largest exponent of  is 5 in the second term. 

Example Question #1 : Polynomials

What is the degree of the polynomial ?

Possible Answers:

Correct answer:

Explanation:

When a polynomial has more than one variable, we need to find the degree by adding the exponents of each variable in each term. 

 has a degree of 4 (since both exponents add up to 4), so the polynomial has a degree of 4 as this term has the highest degree. 

Example Question #3 : How To Find The Degree Of A Polynomial

Find the degree of the following polynomial:

Possible Answers:

Correct answer:

Explanation:

When a polynomial has more than one variable, we need to find the degree by adding the exponents of each variable in each term.

Even though  has a degree of 5, it is not the highest degree in the polynomial - 

 has a degree of 6 (with exponents 1, 2, and 3). Therefore, the degree of the polynomial is 6.  

Example Question #1 : How To Find The Degree Of A Polynomial

Solve each problem and decide which is the best of the choices given.

 

What is the degree of the following polynomial?

Possible Answers:

Correct answer:

Explanation:

The degree is defined as the largest exponent in the polynomial. In this case, it is .

Example Question #2 : Polynomials

What is the degree of this polynomial?

Possible Answers:

Degree 12

Degree 6

Degree 8

Degree 10

Degree 7

Correct answer:

Degree 8

Explanation:

When an exponent with a power is raised to another power, the value of the power are multiplied.

When multiplying exponents you add the powers together

The degree of a polynomial is the determined by the highest power. In this problem the highest power is 8.

Example Question #2 : Polynomials

Find the degree of the following polynomial: 

Possible Answers:

Correct answer:

Explanation:

The degree of a polynomial is the largest exponent on one of its variables (for a single variable), or the largest sum of exponents on variables in a single term (for multiple variables).

Here, the term with the largest exponent is , so the degree of the whole polynomial is 6.

Example Question #1 : How To Divide Polynomials

If 3 less than 15 is equal to 2x, then 24/x must be greater than

 

Possible Answers:

3

6

4

5

Correct answer:

3

Explanation:

Set up an equation for the sentence: 15 – 3 = 2x and solve for x.  X equals 6. If you plug in 6 for x in the expression 24/x, you get 24/6 = 4. 4 is only choice greater than a. 

 

 

Learning Tools by Varsity Tutors