SAT Math : SAT Mathematics

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #2 : How To Multiply Polynomials

 and  represent positive quantities.

Evaluate .

Possible Answers:

Correct answer:

Explanation:

 can be recognized as the pattern conforming to that of the difference of two perfect cubes:

 

Additionally, 

 and  is positive, so

Using the product of radicals property, we see that

and 

 and  is positive, so

,

and

Substituting for  and , then collecting the like radicals, 

.

Example Question #1 : How To Subtract Polynomials

Simplify the following expression:

Possible Answers:

Correct answer:

Explanation:

This is not a FOIL problem, as we are adding rather than multiplying the terms in parentheses.

Add like terms together:

has no like terms.

Combine these terms into one expression to find the answer:

Example Question #1 : How To Find The Solution To A Binomial Problem

Define an operation  on the set of real numbers as follows:

For all real ,

How else could this operation be defined?

Possible Answers:

Correct answer:

Explanation:

, as the cube of a binomial, can be rewritten using the following pattern:

Applying the rules of exponents to simplify this:

Therefore, the correct choice is that, alternatively stated,

.

Example Question #1 : Binomials

Solve for .

Possible Answers:

Correct answer:

Explanation:

Factor the expression

numerator: find two numbers that add to 2 and multiply to -8 [use 4,-2]

denominator: find two numbers that add to 5 and multiply to -14 [use 7,-2]

 

new expression:

Cancel the  and cross multiply.

Example Question #1 : Binomials

If 〖(x+y)〗= 144 and 〖(x-y)〗= 64, what is the value of xy?

 

 

Possible Answers:

22

18

20

16

Correct answer:

20

Explanation:

We first expand each binomial to get x2 + 2xy + y2 = 144  and x2 - 2xy + y2 = 64. We then subtract the second equation from the first to find 4xy = 80. Finally, we divide each side by 4 to find xy = 20.

 

 

Example Question #22 : Polynomials

Solve each problem and decide which is the best of the choices given.

 

What are the zeros of the following trinomial?

Possible Answers:

Correct answer:

Explanation:

First factor out a . Then the factors of the remaining polynomial, 

, are  and .

Set everything equal to zero and you get , , and  because you cant forget to set  equal to zero.

Example Question #1 : Trinomials

Subtract  from .

Possible Answers:

Correct answer:

Explanation:

Step 1: We need to read the question carefully. It says subtract from. When you see the word "from", you read the question right to left. 

I am subtracting the left equation from the right equation.

Step 2: We need to write the equation on the right minus the equation of the left.



Step 3: Distribute the minus sign in front of the parentheses:



Step 4: Combine like terms:





Step 5: Put all the terms together, starting with highest degree. The degree of the terms is the exponent. Here, the highest degree is 2 and lowest is zero.

The final equation is  

Example Question #24 : Polynomials

What is a possible value for x in x2 – 12x + 36 = 0 ?

Possible Answers:

There is not enough information

2

6

–6

Correct answer:

6

Explanation:

You need to factor to find the possible values for x. You need to fill in the blanks with two numbers with a sum of -12 and a product of 36. In both sets of parenthesis, you know you will be subtracting since a negative times a negative is a positive and a negative plus a negative is a negative

(x –__)(x –__).

You should realize that 6 fits into both blanks.

You must now set each set of parenthesis equal to 0.

x – 6 = 0; x – 6 = 0

Solve both equations: x = 6 

Example Question #3 : Algebra

If r and t are constants and x2  +rx +6=(x+2)(x+t), what is the value of r?

Possible Answers:

7

It cannot be determined from the given information.

5

6

Correct answer:

5

Explanation:

We first expand the right hand side as x2+2x+tx+2t and factor out the x terms to get x2+(2+t)x+2t. Next we set this equal to the original left hand side to get x2+rx +6=x2+(2+t)x+2t, and then we subtract x2  from each side to get rx +6=(2+t)x+2t. Since the coefficients of the x terms on each side must be equal, and the constant terms on each side must be equal, we find that r=2+t and 6=2t, so t is equal to 3 and r is equal to 5.

Example Question #4 : Factoring Polynomials

Solve for x

2x^2-4=3 +5

Possible Answers:

\sqrt{6}

6

\pm \sqrt{12}

\pm \sqrt{6}

12

Correct answer:

\pm \sqrt{6}

Explanation:

2x^2-4=3 +5

First, add 4 to both sides:

Divide both sides by 2:

Learning Tools by Varsity Tutors