SAT Math : SAT Mathematics

Study concepts, example questions & explanations for SAT Math

varsity tutors app store varsity tutors android store varsity tutors ibooks store

Example Questions

Example Question #341 : Algebra

Consider the equation:

 _________ 

Fill in the blank with a real constant to form an equation with exactly one real solution.

Possible Answers:

Correct answer:

Explanation:

We will call the constant  that goes in the blank . The equation becomes 

Write the quadratic equation in standard form  by subtracting  from both sides:

The solution set comprises exactly one rational solution if and only if the discriminant  is equal to 0. Setting . and substituting in the equation:

Solving for :

,

that is, either  or .

 is not a choice, but 24 is; this is the correct response.

 

Example Question #341 : Algebra

Evaluate .

Possible Answers:

The system has no solution.

Correct answer:

Explanation:

Multiply both sides of the top equation by 7:

Multiply both sides of the bottom equation by :

 

Add both sides of the equations to eliminate the  terms:

                 

Solve for :

 

Example Question #41 : Quadratic Equations

Find the solutions of the equation .

Possible Answers:

Correct answer:

Explanation:

This is a quadratic equation because the leading term is of degree ; hence, its solutions can be easily calculated via the quadratic formula:

In order to use the quadratic formula to solve a quadratic equation, you must identify the values of the coefficients , and , substitute them into the quadratic formula, and perform the arithmetical calculations to yield one, two, or no real number solutions for .

In this case, , and . Hence, the quadratic formula yields

Hence, this equation has two real solutions:  and .

Example Question #2121 : Sat Mathematics

What is the sum of all the values of  that satisfy:

Possible Answers:

Correct answer:

Explanation:

With quadratic equations, always begin by getting it into standard form:

Therefore, take our equation:

And rewrite it as:

You could use the quadratic formula to solve this problem.  However, it is possible to factor this if you are careful.  Factored, the equation can be rewritten as:

Now, either one of the groups on the left could be  and the whole equation would be .  Therefore, you set up each as a separate equation and solve for :

OR

The sum of these values is:

Example Question #41 : Quadratic Equations

Tommy throws a rock off a 10 meter ledge at a speed of 3 meters/second. Calculate when the rock hits the ground.

To solve use the equation 

where

Possible Answers:

Correct answer:

Explanation:

Tommy throws a rock off a 10 meter ledge at a speed of 3 meters/second. To calculate when the rock hits the ground first identify what is known.

Using the equation 

where

it is known that,

Substituting the given values into the position  equation looks as follows.

Now to calculate when the rock hits the ground, find the  value that results in .

Use graphing technology to graph .

Screen shot 2016 02 11 at 8.18.52 am

It appears that the rock hits the ground approximately 1.75 seconds after Tommy throws it.

Example Question #42 : Quadratic Equations

Find the solutions for 

Possible Answers:

Correct answer:

Explanation:

The first step is to set it equal to zero.

Now we will use the quadratic formula.

In this case 

 

 

Example Question #1 : Variables

Multiply:  

Possible Answers:

Correct answer:

Explanation:

Distribute the monomial through the polynomial.

The answer is: 

Example Question #2 : Variables

Evaluate:  

Possible Answers:

Correct answer:

Explanation:

Distribute the monomial through each term inside the parentheses.

Example Question #2 : Variables

Multiply the monomials:  

Possible Answers:

Correct answer:

Explanation:

In order to multiply this, we can simply multiply the coefficients together and the  variables together.  Anytime we multiply a variable of the same base, we can add the exponents.

Simplify the right side.

The answer is:  

Example Question #1 : Variables

Distribute: 

Possible Answers:

Correct answer:

Explanation:

Distribute the monomial to each part of the polynomial, paying careful attention to signs:

Learning Tools by Varsity Tutors