SAT II Math II : Single-Variable Algebra

Study concepts, example questions & explanations for SAT II Math II

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : How To Multiply A Monomial By A Polynomial

Expand the expression by multiplying the terms.

\displaystyle \small (x-4)(x+2)(2x-5)

Possible Answers:

\displaystyle \small 2x^3-9x^2-6x+40

\displaystyle \small 2x^3+9x^2-6x+40

\displaystyle \small 2x^3-x^2-26x+40

\displaystyle \small 2x^3+x^2-26x+40

Correct answer:

\displaystyle \small 2x^3-9x^2-6x+40

Explanation:

\displaystyle \small (x-4)(x+2)(2x-5)

When multiplying, the order in which you multiply does not matter. Let's start with the first two monomials.

 \displaystyle (x-4)(x+2)

Use FOIL to expand.

\displaystyle x^2+2x-4x-8=x^2-2x-8

Now we need to multiply the third monomial.

\displaystyle \small (x-4)(x+2)(2x-5)=(x^2-2x-8)(2x-5)

Similar to FOIL, we need to multiply each combination of terms.

\displaystyle 2x(x^2-2x-8)+(-5)(x^2-2x-8)

\displaystyle 2x^3-4x^2-16x-5x^2+10x+40

Combine like terms.

\displaystyle 2x^3-9x^2-6x+40

Example Question #61 : Single Variable Algebra

Multiply the expressions:

\displaystyle \small (x^{2} - 2x + 7) (x^{2} - 2x - 7)

Possible Answers:

\displaystyle \small \small \small \small \small x^{4}+4x^{3}-4x^2+49

\displaystyle \small \small \small x^{4}-4x^{3}-4x^2-49

\displaystyle \small \small \small \small x^{4}+4x^{3}-4x^2-49

\displaystyle \small x^{4}-4x^{3}+4x^2-49

\displaystyle \small \small x^{4}-4x^{3}+4x^2+49

Correct answer:

\displaystyle \small x^{4}-4x^{3}+4x^2-49

Explanation:

You can look at this as the sum of two expressions multiplied by the difference of the same two expressions. Use the pattern

\displaystyle \small (A+B)(A-B) = (A^{2}-B^{2}),

where \displaystyle \small A = x^{2} - 2x and \displaystyle \small B = 7.

\displaystyle \small \small \small (x^{2} - 2x + 7) (x^{2} - 2x - 7) = (x^{2} - 2x )^{2} - 7^{2} = (x^{2} - 2x )^{2} - 49 

To find \displaystyle \small (x^{2} - 2x )^{2}, you use the formula for perfect squares:

\displaystyle \small (A-B)^{2} = (A^{2}-2AB+B^{2}) ,

where \displaystyle \small \small A = x^{2} and \displaystyle \small B = 2x.

\displaystyle \small \small \small (x^{2}-2x)^{2} = ((x^{2})^{2}-2x^{2}(2x)+(2x)^{2}) = x^{4}-4x^{3}+4x^2

Substituting above, the final answer is \displaystyle \small x^{4}-4x^{3}+4x^2-49 .

Example Question #1 : Expanding Expressions And Foil

Which of the following values of \displaystyle N would make 

\displaystyle 3x^{2} +Nx + 32 

a prime polynomial?

Possible Answers:

\displaystyle N = 20

\displaystyle N = 22

\displaystyle N = 30

\displaystyle N = 35

\displaystyle N = 28

Correct answer:

\displaystyle N = 30

Explanation:

A polynomial of the form \displaystyle ax^{2} +bx + c whose terms do not have a common factor, such as this, can be factored by rewriting it as \displaystyle ax^{2} +fx + gx + c such that \displaystyle f + g =b and \displaystyle fg = ac; the grouping method can be used on this new polynomial.

Therefore, for  \displaystyle 3x^{2} +Nx + 32 to be factorable, \displaystyle N must be the sum of the two integers of a factor pair of \displaystyle 3 \times 32 = 96. We are looking for a value of \displaystyle N that is not a sum of two such factors.

The factor pairs of 96, along with their sums, are:

1 and 96 - sum 97

2 and 48 - sum 50

3 and 32 - sum 35

4 and 24 - sum 28

6 and 16 - sum 22

8 and 12 - sum 20

Of the given choices, only 30 does not appear among these sums; it is the correct choice.

Example Question #62 : Single Variable Algebra

How many of the following are prime factors of the polynomial \displaystyle y^{3} - 125 ?

(A) \displaystyle y - 5

(B) \displaystyle y + 5

(C) \displaystyle y^{2}+ 5y + 2 5

(D) \displaystyle y^{2}-5y + 2 5

Possible Answers:

Four

Three

One

Two

None

Correct answer:

Two

Explanation:

\displaystyle y^{3} - 125 = y^{3} - 5 ^{3}

making this polynomial the difference of two cubes.

As such,  \displaystyle y^{3} - 125 can be factored using the pattern

\displaystyle A ^{3} - B ^{3} = (A - B) (A^{2}+ AB + B^{2})

so

\displaystyle y^{3} - 125 = y^{3} - 5 ^{3} = (y - 5) (y^{2}+ y \cdot 5 + 5^{2})= (y - 5) (y^{2}+ 5y + 2 5 )

(A) and (C) are both factors, but not (B) or (D), so the correct response is two.

Example Question #2 : Simplifying Polynomials

Subtract the expressions below.

\displaystyle \left (\frac{1}{3}x^{2}+\frac{1}{6}xy-\frac{5}{4}y^{2} \right )-\left (\frac{1}{9}x^{2}-\frac{4}{3}xy+y^{2} \right )

Possible Answers:

\displaystyle \frac{1}{27}x^{2}-\frac{2}{9}xy-\frac{5}{4}y^{2}

\displaystyle \frac{2}{9}x^{2}+\frac{7}{6}xy-\frac{1}{4}y^{2}

None of the other answers are correct.

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{9}{4}y^{2}

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{5}{4}y^{2}

Correct answer:

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{9}{4}y^{2}

Explanation:

\displaystyle \left (\frac{1}{3}x^{2}+\frac{1}{6}xy-\frac{5}{4}y^{2} \right )-\left (\frac{1}{9}x^{2}-\frac{4}{3}xy+y^{2} \right )

Since we are only adding and subtracting (there is no multiplication or division), we can remove the parentheses.

Regroup the expression so that like variables are together. Remember to carry positive and negative signs.

For all fractional terms, find the least common multiple in order to add and subtract the fractions.

Combine like terms and simplify.

\displaystyle \frac{2}{9}x^{2}+\frac{9}{6}xy-\frac{9}{4}y^{2}

\displaystyle \frac{2}{9}x^{2}+\frac{3}{2}xy-\frac{9}{4}y^{2}

Example Question #1951 : Algebra Ii

Divide \displaystyle 3x^3+5x^2-x+8 by \displaystyle x^2-1.

 

Possible Answers:

\displaystyle 3x+5+\frac{x^2+1}{2x-13}

\displaystyle 3x+5-\frac{2x+13}{x^2-1}

\displaystyle x^2-1-\frac{3x+5}{2x+13}

\displaystyle 3x+5+\frac{2x+13}{x^2-1}

\displaystyle 2x+13+\frac{3x+5}{x^2-1}

Correct answer:

\displaystyle 3x+5+\frac{2x+13}{x^2-1}

Explanation:

First, set up the division as the following:

Look at the leading term \displaystyle x^2 in the divisor and \displaystyle 3x^3 in the dividend. Divide \displaystyle 3x^3 by \displaystyle x^2 gives \displaystyle 3x; therefore, put \displaystyle 3x on the top:

Then take that \displaystyle 3x and multiply it by the divisor, \displaystyle x^2-1, to get \displaystyle 3x^3-3x.  Place that \displaystyle 3x^3-3x under the division sign:

Subtract the dividend by that same \displaystyle 3x^3-3x and place the result at the bottom. The new result is \displaystyle 5x^2+2x+8, which is the new dividend.

Now, \displaystyle 5x^2 is the new leading term of the dividend.  Dividing \displaystyle 5x^2 by \displaystyle x^2 gives 5.  Therefore, put 5 on top:

Multiply that 5 by the divisor and place the result, \displaystyle 5x^2-5, at the bottom:

Perform the usual subtraction:

Therefore the answer is \displaystyle 3x+5 with a remainder of \displaystyle 2x+13, or \displaystyle 3x+5+\frac{2x+13}{x^2-1}.

Example Question #1 : Operations With Polynomials

Which of the following is a prime factor of \displaystyle n^{4} - 32n^{2} +256 ?

Possible Answers:

\displaystyle n^{2} -4n + 16

None of the other responses gives a correct answer.

\displaystyle n^{2} -4n - 16

\displaystyle n^{2} + 4n - 16

\displaystyle n^{2} + 4n + 16

Correct answer:

None of the other responses gives a correct answer.

Explanation:

\displaystyle n^{4} - 32n^{2} +256 can be seen to fit the pattern 

\displaystyle A ^{2} - 2AB + B^{2}:

\displaystyle n^{4} - 32n^{2} +256 = \left (n^{2} \right ) ^{2}- 2 \cdot n^{2} \cdot 16 + 16 ^{2}

where \displaystyle A = n^{2} , B = 16

\displaystyle A ^{2} - 2AB + B^{2} can be factored as \displaystyle (A-B ) ^{2}, so 

\displaystyle n^{4} - 32n^{2} +256 = \left (n^{2} \right ) ^{2}- 2 \cdot n^{2} \cdot 16 + 16 ^{2} =\left ( n ^{2} - 16 \right )^{2}

\displaystyle n^{2} - 16 = n^{2} - 4^{2}, making this the difference of squares, so it can be factored as follows:

\displaystyle n^{2} - 16 = n^{2} - 4^{2} = (n + 4) (n - 4)

Therefore, 

\displaystyle n^{4} - 32n^{2} +256 = \left ( n ^{2} - 16 \right )^{2} = (n+4) ^{2} (n-4) ^{2}

The polynomial has only two prime factors, each squared, neither of which appear among the choices.

Example Question #63 : Single Variable Algebra

Divide:

\displaystyle \left ( 40x^{3} - 24x^{2}+ 20x- 64\right ) \div 8 x^{2}

Possible Answers:

\displaystyle 5x-3 - \frac{8}{x^{2}}+ \frac{ 5}{ 2x^{3} }

\displaystyle 5x-3+ \frac{ 5}{ 2x } - \frac{8}{x^{2} }

\displaystyle 5x^{2} -3+ \frac{ 5}{ 2x^{2} } - \frac{8}{x^{3} }

\displaystyle 5x-3 - \frac{8}{x}+ \frac{ 5}{ 2x^{2} }

\displaystyle 5x-3+ \frac{ 5}{ 2x^{2} } - \frac{8}{x^{3} }

Correct answer:

\displaystyle 5x-3+ \frac{ 5}{ 2x } - \frac{8}{x^{2} }

Explanation:

Divide termwise:

\displaystyle \left ( 40x^{3} - 24x^{2}+ 20x- 64\right ) \div 8 x^{2}

\displaystyle = \frac{40x^{3} - 24x^{2}+ 20x- 64}{ 8 x^{2}}

\displaystyle = \frac{40x^{3} }{ 8 x^{2}}- \frac{ 24x^{2}}{ 8 x^{2}}+ \frac{ 20x}{ 8 x^{2}}- \frac{ 64}{ 8 x^{2}}

\displaystyle = \frac{40 }{ 8}x^{3-2}- \frac{ 24}{ 8 }+ \frac{ 20x}{ 8 } \cdot \frac{1}{x^{2-1}}- \frac{ 64}{8 }\cdot \frac{1}{x^{2} }

\displaystyle =5x-3+ \frac{ 5}{ 2 } \cdot \frac{1}{x}- 8 \cdot \frac{1}{x^{2} }

\displaystyle =5x-3+ \frac{ 5}{ 2x } - \frac{8}{x^{2} }

Example Question #517 : Sat Subject Test In Math Ii

Factor:

\displaystyle 27N^{3}-1,331

Possible Answers:

The polynomial is prime.

\displaystyle (3N - 11)(9N^{2}+121)

\displaystyle (3N - 11)^{3}

\displaystyle (3N - 11)(9N^{2}+33N+121)

\displaystyle (3N - 11)(3N+11)^{2}

Correct answer:

\displaystyle (3N - 11)(9N^{2}+33N+121)

Explanation:

\displaystyle 27N^{3}-1,331 can be rewritten as \displaystyle (3N)^{3} - 11^{3} and is therefore the difference of two cubes. As such, it can be factored using the pattern

\displaystyle A^{3}-B^{3} =(A-B) (A^{2}+AB +B^{2})

where \displaystyle A = 3N, B = 11.

\displaystyle 27N^{3}-1,331

\displaystyle =(3N)^{3} - 11^{3}

\displaystyle = (3N-11)[(3N)^{2}+3N\cdot 11 +11^{2}]

\displaystyle = (3N-11)(9N^{2}+33N +121)

Example Question #1 : Operations With Polynomials

Factor completely:

\displaystyle t^{3} + 512

Possible Answers:

The polynomial is prime.

\displaystyle (t- 8) (t^{2}-8t-64)

\displaystyle (t+ 8) (t^{2}-8t+64)

\displaystyle (t+ 8) (t-8)^{2} 

\displaystyle (t+ 8) ^{3}

Correct answer:

\displaystyle (t+ 8) (t^{2}-8t+64)

Explanation:

Since both terms are perfect cubes \displaystyle \left (512= 8^{3} \right ), the factoring pattern we are looking to take advantage of is the sum of cubes pattern. This pattern is

\displaystyle A^{3}+ B^{3} = (A + B) (A^{2}-AB +B^{2})

We substitute \displaystyle t for \displaystyle A and 8 for \displaystyle B:

\displaystyle t^{3} + 512= t^{3} + 8^{3}

\displaystyle = (t+ 8) (t^{2}-t \cdot 8+8^{2})

\displaystyle = (t+ 8) (t^{2}-8t+64)

Learning Tools by Varsity Tutors