PSAT Math : PSAT Mathematics

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : How To Add Exponents

Which of the following is eqivalent to 5b – 5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) , where b is a constant?

Possible Answers:

0

1/5

5

1

5b–1

Correct answer:

0

Explanation:

We want to simplify 5b – 5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) .

Notice that we can collect the –5(b–1) terms, because they are like terms. There are 5 of them, so that means we can write –5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) as (–5(b–1))5.

To summarize thus far:

5b – 5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) – 5(b–1) = 5b +(–5(b–1))5

It's important to interpret –5(b–1) as (–1)5(b–1) because the –1 is not raised to the (b – 1) power along with the five. This means we can rewrite the expression as follows:

5b +(–5(b–1))5 = 5b + (–1)(5(b–1))(5) = 5b – (5(b–1))(5)

Notice that 5(b–1) and 5 both have a base of 5. This means we can apply the property of exponents which states that, in general, abac = ab+c. We can rewrite 5 as 51 and then apply this rule.

5b – (5(b–1))(5) = 5b – (5(b–1))(51) = 5b – 5(b–1+1)

Now, we will simplify the exponent b – 1 + 1 and write it as simply b.

5b – 5(b–1+1) = 5b – 5b = 0

The answer is 0.

Example Question #3 : How To Add Exponents

Ifx^2=11, then what does x^4 equal?

Possible Answers:

Correct answer:

Explanation:

Example Question #483 : Algebra

Simplify.  All exponents must be positive.

\left ( x^{-2}y^{3} \right )\left ( x^{5}y^{-4} \right )

Possible Answers:

\left ( x^{-2}+x^{5} \right )\left ( y^{3}+y^{-4} \right )

Correct answer:

Explanation:

Step 1: \left ( x^{-2}x^{5} \right )= x^{3}

Step 2: \left ( y^{3}y^{-4} \right )= y^{-1}= \frac{1}{y}

Step 3: (Correct Answer): \frac{x^{3}}{y}

Example Question #4 : How To Add Exponents

Simplify.  All exponents must be positive.

Possible Answers:

\frac{1}{x^{5}y^{-6}}

\frac{y^{6}}{x^{5}}

\frac{\left ( xy \right )^{2}}{\left ( xy \right )}

x^{-1}y^{4}

x^{-5}y^{6}

Correct answer:

\frac{y^{6}}{x^{5}}

Explanation:

Step 1: \frac{y^{5}}{\left ( x^{3}x^{2} \right )\left \right )y^{-1}}

 

Step 2: \frac{\left ( y^{5}y^{1} \right )}{x^{3}x^{2}}

Step 3:\frac{y^{6}}{x^{5}}

Example Question #5 : How To Add Exponents

\frac{\left ( -11 \right )^{-8}}{\left ( -11\right )^{12}}

Answer must be with positive exponents only.

Possible Answers:

\left ( -11 \right )^{-20}

\frac{1}{\left ( -11 \right )^{4}}

\frac{1}{\left ( -11 \right )^{20}}

\left ( -11 \right )^{4}

\left ( 1 \right )^{-20}

Correct answer:

\frac{1}{\left ( -11 \right )^{20}}

Explanation:

Step 1:\frac{1}{\left ( -11 \right )^{12}\left ( -11 \right )^{8}}

Step 2: The above is equal to \frac{1}{\left ( -11 \right )^{20}}

Example Question #6 : How To Add Exponents

Evaluate:

 -\left ( -3 \right )^{0}-\left ( -3^{0} \right )

Possible Answers:

Correct answer:

Explanation:

-\left ( -3 \right )^{0}= -1

 

Example Question #7 : How To Add Exponents

Simplify:

Possible Answers:

Correct answer:

Explanation:

Similarly

 

So

Example Question #71 : Exponents

If , what is the value of ?

Possible Answers:

Correct answer:

Explanation:

Using exponents, 27 is equal to 33. So, the equation can be rewritten:

34+ 6 = (33)2x

34+ 6 = 36x

When both side of an equation have the same base, the exponents must be equal. Thus:

4x + 6 = 6x

6 = 2x

x = 3

Example Question #81 : Exponents

What is the value of  such that ?

Possible Answers:

Correct answer:

Explanation:

We can solve by converting all terms to a base of two. 4, 16, and 32 can all be expressed in terms of 2 to a standard exponent value.

We can rewrite the original equation in these terms.

Simplify exponents.

Finally, combine terms.

From this equation, we can see that .

Example Question #13 : Exponents

How many of the following base ten numbers have a base five representation of exactly four digits?

(A) 

(B) 

(C) 

(D) 

Possible Answers:

Two

Four

One

None

Three

Correct answer:

Three

Explanation:

A number in base five has powers of five as its place values; starting at the right, they are 

The lowest base five number with four digits would be

 in base ten.

The lowest base five number with five digits would be

 in base ten.

Therefore, a number that is expressed as a four-digit number in base five must fall in the range

Three of the four numbers - all except 100 - fall in this range.

Learning Tools by Varsity Tutors