All PSAT Math Resources
Example Questions
Example Question #11 : Solid Geometry
A company wants to build a cubical room around a cone so that the cone's height and diameter are 3 inch less than the dimensions of the cube. If the volume of the cone is 486π ft3, what is the surface area of the cube?
486 in2
69,984 in2
513.375 in2
726 in2
73,926 in2
73,926 in2
To begin, we need to solve for the dimensions of the cone.
The basic form for the volume of a cone is: V = (1/3)πr2h
Using our data, we know that h = 2r because the height of the cone matches its diameter (based on the prompt).
486π = (1/3)πr2 * 2r = (2/3)πr3
Multiply both sides by (3/2π): 729 = r3
Take the cube root of both sides: r = 9
Note that this is in feet. The answers are in square inches. Therefore, convert your units to inches: 9 * 12 = 108, then add 3 inches to this: 108 + 3 = 111 inches.
The surface area of the cube is defined by: A = 6 * s2, or for our data, A = 6 * 1112 = 73,926 in2
Example Question #701 : Geometry
If the volume of a cube is 216 cubic units, then what is its surface area in square units?
64
108
216
54
36
216
The volume of a cube is given by the formula V = , where V is the volume, and s is the length of each side. We can set V to 216 and then solve for s.
In order to find s, we can find the cube root of both sides of the equaton. Finding the cube root of a number is the same as raising that number to the one-third power.
This means the length of the side of the cube is 6. We can use this information to find the surface area of the cube, which is equal to . The formula for surface area comes from the fact that each face of the cube has an area of , and there are 6 faces in a cube.
surface area =
The surface area of the square is 216 square units.
The answer is 216.
Example Question #702 : Geometry
You have a cube with sides of 4.5 inches. What is the surface area of the cube?
The area of one side of the cube is:
A cube has 6 sides, so the total surface area of the cube is
Example Question #711 : Geometry
A cube has a surface area of 24. If we double the height of the cube, what is the volume of the new rectangular box?
We have a cube with a surface area of 24, which means each side has an area of 4. Therefore, the length of each side is 2. If we double the height, the volume becomes .
Example Question #712 : Geometry
A cube has a surface area of 10m2. If a cube's sides all double in length, what is the new surface area?
20m2
320m2
40m2
80m2
640m2
40m2
The equation for surface area of the original cube is 6s2. If the sides all double in length the new equation is 6(2s)2 or 6 * 4s2. This makes the new surface area 4x that of the old. 4x10 = 40m2
Example Question #2 : How To Find The Surface Area Of A Cube
If a cube has an area of , then what is the surface area of this cube?
The area of a cube is equal to the measure of one edge cubed. If we take the cube root of , we get , so the edges of this cube measure ; therefore, one face of the cube has an area of square inches, because .
There are sides to a cube, so
Example Question #1 : Solid Geometry
If a cube is 3” on all sides, what is the length of the diagonal of the cube?
3√2
9
3√3
27
4√3
3√3
General formula for the diagonal of a cube if each side of the cube = s
Use Pythagorean Theorem to get the diagonal across the base:
s2 + s2 = h2
And again use Pythagorean Theorem to get cube’s diagonal, then solve for d:
h2 + s2 = d2
s2 + s2 + s2 = d2
3 * s2 = d2
d = √ (3 * s2) = s √3
So, if s = 3 then the answer is 3√3
Example Question #1 : Cubes
A cube is inscribed in a sphere of radius 1 such that all 8 vertices of the cube are on the surface of the sphere. What is the length of the diagonal of the cube?
8
2
1
√(3)
√(2)
2
Since the diagonal of the cube is a line segment that goes through the center of the cube (and also the circumscribed sphere), it is clear that the diagonal of the cube is also the diameter of the sphere. Since the radius = 1, the diameter = 2.
Example Question #1 : How To Find The Diagonal Of A Cube
What is the length of the diagonal of a cube with volume of 512 in3?
2√(6) in
4√(3) in
8√(3) in
8 in
None of the other answers
8√(3) in
The first thing necessary is to determine the dimensions of the cube. This can be done using the volume formula for cubes: V = s3, where s is the length of the cube. For our data, this is:
s3 = 512, or (taking the cube root of both sides), s = 8.
The distance from corner to corner of the cube will be equal to the distance between (0,0,0) and (8,8,8). The distance formula for three dimensions is very similar to that of 2 dimensions (and hence like the Pythagorean Theorem):
d = √( (x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2)
Or for our simpler case:
d = √( (x)2 + (y)2 + (z)2) = √( (s)2 + (s)2 + (s)2) = √( (8)2 + (8)2 + (8)2) = √( 64 + 64 + 64) = √(64 * 3) = 8√(3)
Example Question #2 : Solid Geometry
What is the length of the diagonal of a cube with volume of 1728 in3?
12√(3) in
3√(3) in
12 in
18 in
6√(3) in
12√(3) in
The first thing necessary is to determine the dimensions of the cube. This can be done using the volume formula for cubes: V = s3, where s is the length of the cube. For our data, this is:
s3 = 1728, or (taking the cube root of both sides), s = 12.
The distance from corner to corner of the cube will be equal to the distance between (0,0,0) and (12,12,12). The distance formula for three dimensions is very similar to that of 2 dimensions (and hence like the Pythagorean theorem):
d = √( (x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2)
Or, for our simpler case:
d = √( (x)2 + (y)2 + (z)2) = √( (s)2 + (s)2 + (s)2) = √( (12)2 + (12)2 + (12)2) = √( 144 + 144 + 144) = √(3 * 144) = 12√(3) = 12√(3)
Certified Tutor