PSAT Math : Plane Geometry

Study concepts, example questions & explanations for PSAT Math

varsity tutors app store varsity tutors android store

Example Questions

Example Question #563 : Plane Geometry

Screen_shot_2013-03-18_at_10.29.01_pm

Kate has a ring-shaped lawn which has an inner radius of 10 feet and an outer radius 25 feet. What is the area of her lawn?

Possible Answers:

175π ft2

125π ft2

275π ft2

525π ft2

325π ft2

Correct answer:

525π ft2

Explanation:

The area of an annulus is

where  is the radius of the larger circle, and  is the radius of the smaller circle.

Example Question #564 : Plane Geometry

A 6 by 8 rectangle is inscribed in a circle. What is the area of the circle?

Possible Answers:

Correct answer:

Explanation:

The image below shows the rectangle inscribed in the circle. Dividing the rectangle into two triangles allows us to find the diameter of the circle, which is equal to the length of the line we drew. Using a2+b2= c2 we get 6+ 82 = c2. c2 = 100, so c = 10. The area of a circle is  . Radius is half of the diameter of the circle (which we know is 10), so r = 5.

Diagram_1

Example Question #325 : Sat Mathematics

A park wants to build a circular fountain with a walkway around it.  The fountain will have a radius of 40 feet, and the walkway is to be 4 feet wide.  If the walkway is to be poured at a depth of 1.5 feet, how many cubic feet of concrete must be mixed to make the walkway?

Possible Answers:

None of the other answers are correct.

Correct answer:

Explanation:

The following diagram will help to explain the solution:

Foutain

We are searching for the surface area of the shaded region.  We can multiply this by the depth (1.5 feet) to find the total volume of this area.

The radius of the outer circle is 44 feet.  Therefore its area is 442π = 1936π.  The area of the inner circle is 402π = 1600π.  Therefore the area of the shaded area is 1936π – 1600π = 336π.  The volume is 1.5 times this, or 504π.

Example Question #3 : Area Of A Circle

How many times greater is the area of a circle with a radius of 4in., compared to a circle with a radius of 2in.?

Possible Answers:

2\pi

2

4\pi

4

Correct answer:

4

Explanation:

The area of a circle can be solved using the equation A=\pi r^{2} 

The area of a circle with radius 4 is \pi 4^{2}=16\pi while the area of a circle with radius 2 is \pi 2^{2}=4\pi. 16\pi \div 4\pi =4

Example Question #35 : Basic Geometry

What is the area of a circle whose diameter is 8?

Possible Answers:

8π

12π

64π

32π

16π

Correct answer:

16π

Explanation:

Circarea

Example Question #401 : Geometry

What is the area, in square feet, of a circle with a circumference of ?

Possible Answers:

Correct answer:

Explanation:

In order to find the area of a circle with a known circumference, first solve for the radius of the circle.

We know the circumference of a circle is equivalent to , where .

The radius of a circle is equal to half the diameter.

Therefore:

The area of a circle is given by the equation . Use the radius to solve for the area.

The area of a circle with circumference  is  square feet.

 

Example Question #81 : Plane Geometry

A square has a perimeter of 48 inches. What is the area, in square inches, of the largest circle that will fit entirely inside the square?

Possible Answers:

Correct answer:

Explanation:

A perimeter of a square is equal to the sum of the four equal sides:

Therefore, the length of one side of this square is 12:

We know the largest circle that can fit entirely inside the square will have a maximum diameter of 12 (the length of one side of the square).

To find the area of this circle, we must find the radius by dividing the diameter by 2:

The radius of the circle is 6. Using the formula for area, we find:

The area of the largest circle that will fit inside a square with a perimeter of 48 inches is  square inches.

 

Example Question #51 : Radius

In the following diagram, the radius is given. What is area of the shaded region? 

Circle_box

Possible Answers:

 

Correct answer:

 

Explanation:

This question asks you to apply the concept of area in finding both the area of a circle and square. Since the cirlce is inscribed in the square, we know that its diameter (two times the radius) is the same length as one side of the square. Since we are given the radius, , we can find the area of both the circle and square.

Square:

  

This gives us the area for the entire square.

The bottom half of the square has area .

Now that we have this value, we must find the area that the circle occupies. The area of a circle is given by .

So the area of this circle will be .

The bottom half of the circle has half that area:

Now that we have both our values, we can subtract the bottom half of the circle from the bottom half of the square to give us the shaded region:

Example Question #1 : How To Find The Area Of A Polygon

A square has an area of 36 cm2. A circle is inscribed and cut out. What is the area of the remaining shape? Use 3.14 to approximate π.

Possible Answers:

15.48 cm2

28.26 cm2

3.69 cm2

7.74 cm2

12.14 cm2

Correct answer:

7.74 cm2

Explanation:

We need to find the area of both the square and the circle and then subtract the two.  Inscribed means draw within a figure so as to touch in as many places as possible.  So the circle is drawn inside the square.  The opposite is circumscribed, meaning drawn outside.

Asquare = s2 = 36 cm2 so the side is 6 cm

6 cm is also the diameter of the circle and thus the radius is 3 cm

A circle = πr2 = 3.14 * 32 = 28.28 cm2

The resulting difference is 7.74 cm2

Example Question #1 : How To Find The Area Of A Polygon

Gre10

In the square above, the radius of each half-circle is 6 inches. What is the area of the shaded region?

Possible Answers:

144 – 36π

36 – 9π

36 – 6π

144 – 6π

144 – 9π

Correct answer:

144 – 36π

Explanation:

We can find the area of the shaded region by subtracting the area of the semicircles, which is much easier to find. Two semi-circles are equivalent to one full circle. Thus we can just use the area formula, where r = 6:

π(62) → 36π

Now we must subtract the area of the semi-circles from the total area of the square. Since we know that the radius also covers half of a side, 6(2) = 12 is the full length of a side of the square. Squaring this, 122 = 144. Subtracting the area of the circles, we get our final terms,

= 144 – 36π

Learning Tools by Varsity Tutors