Precalculus : Pre-Calculus

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #4 : Express Complex Numbers In Polar Form

What is the polar form of the complex number \displaystyle \tiny \tiny \small 3+4i ?

Possible Answers:

\displaystyle \large 25e^{\arcsin\frac{3}{4}i}

\displaystyle \large \large 5e^{\arcsin\frac{4}{3}i}

\displaystyle \large \large \large 25e^{\arctan\frac{4}{3}i}

\displaystyle \large \large \large 5e^{\arctan\frac{4}{3}i}

\displaystyle \large \large 5e^{\arctan\frac{3}{4}i}

Correct answer:

\displaystyle \large \large \large 5e^{\arctan\frac{4}{3}i}

Explanation:

The correct answer is 

\displaystyle \small 5e^{\arctan\frac{4}{3}i}

The polar form of a complex number \displaystyle \small a+bi is \displaystyle \small re^{i\theta} where \displaystyle \small r is the modulus of the complex number and \displaystyle \small \theta is the angle in radians between the real axis and the line that passes through \displaystyle \small a+bi ( \displaystyle \small r=\sqrt{a^2+b^2}  and \displaystyle \small \theta = \arctan(b/a)). We can solve for \displaystyle \small r and \displaystyle \small \theta easily for the complex number \displaystyle \small 3+4i:

\displaystyle \small r = \sqrt{3^2+4^2}=\sqrt{25}=5

\displaystyle \small \theta = \arctan(4/3)

which gives us

\displaystyle \small 5e^{\arctan\frac{4}{3}i}

Example Question #5 : Express Complex Numbers In Polar Form

Express the complex number in polar form:

\displaystyle 4+3i

 

Possible Answers:

\displaystyle z= 5(cos(.93)+isin(.93))

\displaystyle z= 36.86(cos(.93)+isin(.93))

\displaystyle z= 25(cos(0.64)+isin(0.64))

\displaystyle z= 0.64(cos(5)+isin(5))

\displaystyle z= 5(cos(0.64)+isin(0.64))

Correct answer:

\displaystyle z= 5(cos(0.64)+isin(0.64))

Explanation:

Remember that the standard form of a complex number is: \displaystyle z=a+bi, which can be rewritten in polar form as: \displaystyle z=r(cos(\theta)+isin(\theta)).

To find r, we must find the length of the line \displaystyle 4+3i by using the Pythagorean theorem:

\displaystyle r=\sqrt{a^2+b^2}

\displaystyle r = \sqrt{4^2+3^2}

    \displaystyle =\sqrt{16+9}

    \displaystyle = \sqrt{25}

    \displaystyle =5

To find \displaystyle \theta, we can use the equation 

\displaystyle \theta=tan^{-1}\frac{b}{a}

   \displaystyle =tan^{-1}\frac{3}{4}

   \displaystyle \approx 0.64

Note that this value is in radians, NOT degrees.

Thus, the polar form of this equation can be written as 

\displaystyle z= 5(cos(0.64)+isin(0.64))

 

Example Question #5 : Express Complex Numbers In Polar Form

Express this complex number in polar form.

\displaystyle z=1+i

Possible Answers:

\displaystyle \left [\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} \right]

None of these answers are correct.

\displaystyle \sqrt{2}\left [\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} \right]

\displaystyle \sqrt{2} \left [1+i \right ]

\displaystyle \sqrt{2}\left [1+i\frac{\sqrt{2}}{2} \right]

Correct answer:

\displaystyle \sqrt{2}\left [\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} \right]

Explanation:

\displaystyle x^2 +y^2=r^2

\displaystyle x=r \cos\Theta

\displaystyle y= r \sin\Theta

\displaystyle \tan \Theta = \frac{y}{x}

 

Given these identities, first solve for \displaystyle r and \displaystyle \Theta. The polar form of a complex number is: \displaystyle r\left [ \cos \Theta +i \sin \Theta \right ]

 

\displaystyle z=1+i

\displaystyle x=1

\displaystyle y=1

\displaystyle r=\sqrt{2}

\displaystyle \tan \Theta = 1

\displaystyle \tan \Theta = 1 at \displaystyle \frac{\pi}{4} (because the original point, (1,1) is in Quadrant 1)

Therefore...

\displaystyle x=\sqrt{2} \cos(\frac{\pi}{4})=\sqrt{2} \:\frac{\sqrt{2}}{2}

\displaystyle y=\sqrt{2} \sin(\frac{\pi}{4})=\sqrt{2} \:\frac{\sqrt{2}}{2}

\displaystyle z=\sqrt{2}\left [\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} \right]

 

Example Question #6 : Express Complex Numbers In Polar Form

Convert to polar form: \displaystyle 4 - 3i

Possible Answers:

\displaystyle 5 (\cos 323.13^o + i \sin 323.13^o)

\displaystyle \cos 340.529^o + i \sin 340. 529^o

\displaystyle 5(\cos 143.13^o + i \sin 143.13^o)

\displaystyle \cos 75.522^o + i \sin 75.522^o

\displaystyle 5 (\cos 36.87^o + i \sin 36.87^o)

Correct answer:

\displaystyle 5 (\cos 323.13^o + i \sin 323.13^o)

Explanation:

First, find the radius \displaystyle r:

\displaystyle r = \sqrt{4^2 + (-3)^2 } = \sqrt{16 + 9 } = \sqrt{25} = 5

Then find the angle, thinking of the imaginary part as the height and the radius as the hypotenuse of a right triangle:

\displaystyle \sin \theta = \frac{ -3}{5}

\displaystyle \theta = \sin ^{-1} (-\frac{3}{5}) \approx -36.870 according to the calculator.

We can get the positive coterminal angle by adding \displaystyle 360:

\displaystyle -36.87^o + 360^o = 323.13 ^o

The polar form is

\displaystyle 5 (\cos 323.13^o + i \sin 323.13^o)

Example Question #7 : Express Complex Numbers In Polar Form

Convert to polar form: \displaystyle 3+2i

Possible Answers:

\displaystyle \sqrt{13} (\cos 56.31^o + i \sin 56.31^o)

\displaystyle \sqrt{13} (\cos 326.31^o + i \sin 326.31^o)

\displaystyle \sqrt7 (\cos 130.893^o + i \sin 130.893^o )

\displaystyle \sqrt7 (\cos 49.107^o + i \sin 49.107^o)

\displaystyle \sqrt{13} (\cos 33.69^o + i \sin 33.69^o)

Correct answer:

\displaystyle \sqrt{13} (\cos 33.69^o + i \sin 33.69^o)

Explanation:

First find the radius, \displaystyle r:

\displaystyle r = \sqrt{3^2 + 2^2 } = \sqrt{9 + 4 } =\sqrt{13}

Now find the angle, thinking of the imaginary part as the height and the radius as the hypotenuse of a right triangle:

\displaystyle \sin \theta = \frac{ 2 } {\sqrt{13 }}

\displaystyle \theta = \sin ^ {-1} (\frac{ 2 }{\sqrt{13}}) \approx 33.69 according to the calculator.

This is an appropriate angle to stay with since this number should be in quadrant I.

The complex number in polar form is \displaystyle \sqrt{13} (\cos 33.69^o + i \sin 33.69 ^o )

Example Question #9 : Express Complex Numbers In Polar Form

Convert the complex number \displaystyle -2 + 5i to polar form

Possible Answers:

\displaystyle \sqrt{29 } (\cos 248.199^o + i \sin 248.199^o)

\displaystyle \sqrt{29 } (\cos 291.801^o + i \sin 291.801^o)

\displaystyle \sqrt{29} (\cos 111.801 ^o + i \sin 111.801^o )

\displaystyle \sqrt{29 } ( \cos 158.199 ^o + i \sin 158.199 ^o )

\displaystyle \sqrt{29 } (\cos 68.199^o + i \sin 68.199^o )

Correct answer:

\displaystyle \sqrt{29} (\cos 111.801 ^o + i \sin 111.801^o )

Explanation:

First find \displaystyle r:

\displaystyle r = \sqrt{(-2)^2 + 5^2 } = \sqrt{4 + 25 } = \sqrt{29}

Now find the angle. Consider the imaginary part to be the height of a right triangle with hypotenuse \displaystyle r.

\displaystyle \sin \theta = \frac{5}{\sqrt{29 } }

\displaystyle \theta = \sin ^{-1} (\frac{5}{\sqrt{29}})\approx 68.199 ^o according to the calculator.

What the calculator does not know is that this angle is actually located in quadrant II, since the real part is negative and the imaginary part is positive.

To find the angle in quadrant II whose sine is also \displaystyle \frac{5 }{ \sqrt{29}}, subtract from \displaystyle 180:

\displaystyle 180^o - 68.199^o = 111.801^o

The complex number in polar form is \displaystyle \sqrt{29} (\cos 111.801^o + i \sin 111.801^o )

Example Question #1 : Polar Coordinates

Convert the polar coordinates to rectangular coordinates:

\displaystyle \left(5, \frac{3\pi}{2}\right)

Possible Answers:

\displaystyle (5, 0)

\displaystyle (-5, -5)

\displaystyle (-5, 0)

\displaystyle (0, -5)

Correct answer:

\displaystyle (0, -5)

Explanation:

To convert polar coordinates \displaystyle (r, \theta) to rectangular coordinates \displaystyle (x, y),

\displaystyle x=r\cos\theta

\displaystyle y=r\sin\theta

Using the information given in the question, 

\displaystyle x=5\cos \frac{3\pi}{2}=5(0)=0

\displaystyle y=5 \sin \frac{3\pi}{2}=5(-1)=-5

The rectangular coordinates are \displaystyle (0, -5)

Example Question #1 : Determine The Polar Equation Of A Graph

Which polar equation would produce this graph?

Polar ppt 3

Possible Answers:

\displaystyle r=4+4cos(\theta)

\displaystyle r=2+2cos(\theta)

\displaystyle r=4+4sin(\theta)

\displaystyle r=2+2sin(\theta)

\displaystyle r=2-2sin(\theta)

Correct answer:

\displaystyle r=2+2sin(\theta)

Explanation:

This is the graph of a cardiod. Based on its orientation where the cusp [pointy part] is on the y-axis, it is a sine and not cosine function. The x-intercepts are at \displaystyle \pm2, so the first number must be 2. Since vertically the graph goes from 0 to 4, the second number must be 2, because \displaystyle 2-2=0 and \displaystyle 2+2=4.

Example Question #2 : Determine The Polar Equation Of A Graph

Give the polar equation for this graph:

Polar 7sin5x

Possible Answers:

\displaystyle r=7sin(5\theta )

\displaystyle r=7sin(10\theta)

\displaystyle r=7-5sin(\theta)

\displaystyle r=5+7sin(\theta)

\displaystyle r=5sin(7\theta)

Correct answer:

\displaystyle r=7sin(5\theta )

Explanation:

This graph shows a rose curve with an odd number of petals.

This means that the equation will be in the form \displaystyle r=asin(b\theta), where \displaystyle a represents the length of the "petals" and \displaystyle b represents the number of petals.

There are 5 petals of length 7.

Example Question #3 : Determine The Polar Equation Of A Graph

Which polar equation would produce this graph?

Polar ppt 5

Possible Answers:

\displaystyle r=8cos(5\theta)

\displaystyle r=8+5sin(\theta)

\displaystyle r=5cos(4\theta)

\displaystyle r=5sin(8\theta)

\displaystyle r=5+4cos(\theta)

Correct answer:

\displaystyle r=5cos(4\theta)

Explanation:

This graph shows a rose curve with an even number of petals. The first petal also intersects with the x-axis. This means that the equation will be in the form \displaystyle r=acos(b\theta) where \displaystyle a is the length of each petal, and \displaystyle b is half the number of petals. (Note that for an odd number of petals, the rose curve will have exactly \displaystyle b petals). In this case, the petals have length 5, and there are 8 of them [half of 8 is 4].

Learning Tools by Varsity Tutors