Precalculus : Pre-Calculus

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #491 : Pre Calculus

Convert the following to rectangular form:  

Possible Answers:

Correct answer:

Explanation:

Distribute the coefficient and simplify:

Example Question #2 : Express Complex Numbers In Rectangular Form

Represent the polar equation:

in rectangular form.

Possible Answers:

Correct answer:

Explanation:

Using the general form of a polar equation:

we find that the value of  is   and the value of  is .

The rectangular form of the equation appears as , and can be found by finding the trigonometric values of the cosine and sine equations. 

distributing the 3, we obtain the final answer of:

Example Question #1 : Polar Form Of Complex Numbers

Represent the polar equation:

in rectangular form.

Possible Answers:

Correct answer:

Explanation:

Using the general form of a polar equation:

we find that the value of  and the value of . The rectangular form of the equation appears as , and can be found by finding the trigonometric values of the cosine and sine equations. 

 Distributing the 4, we obtain the final answer of:

Example Question #1 : Express Complex Numbers In Rectangular Form

Represent the polar equation:

in rectangular form.

Possible Answers:

Correct answer:

Explanation:

Using the general form of a polar equation:

we find that the value of  and the value of . The rectangular form of the equation appears as , and can be found by finding the trigonometric values of the cosine and sine equations. 

distributing the 5, we obtain the final answer of:

 

Example Question #1 : Express Complex Numbers In Rectangular Form

Convert in rectangular form

Possible Answers:

Correct answer:

Explanation:

To convert, just evaluate the trig ratios and then distribute the radius.

 

Example Question #1 : Express Complex Numbers In Rectangular Form

Convert to rectangular form

Possible Answers:

Correct answer:

Explanation:

To convert to rectangular form, just evaluate the trig functions and then distribute the radius:

Example Question #1 : Express Complex Numbers In Rectangular Form

Convert to rectangular form

Possible Answers:

Correct answer:

Explanation:

To convert, evaluate the trig ratios and then distribute the radius:

Example Question #1 : Polar Form Of Complex Numbers

The following equation has complex roots:

 

Express these roots in polar form.

Possible Answers:

  

Correct answer:

  

Explanation:

Every complex number can be written in the form a + bi

The polar form of a complex number takes the form r(cos  + isin 

Now r can be found by applying the Pythagorean Theorem on a and b, or:

r = 

 can be found using the formula:

 = 

So for this particular problem, the two roots of the quadratic equation 

are: 

Hence, a = 3/2 and b = 3√3 / 2

Therefore r =  = 3

and  = tan^-1 (√3) = 60

And therefore x = r(cos  + isin )  = 3 (cos 60 + isin 60)

 

 

 

Example Question #2 : Polar Form Of Complex Numbers

Express the roots of the following equation in polar form.

Possible Answers:

Correct answer:

Explanation:

First, we must use the quadratic formula to calculate the roots in rectangular form.

Remembering that the complex roots of the equation take on the form a+bi,

we can extract the a and b values.

We can now calculate r and theta. 

Using these two relations, we get 

. However, we need to adjust this theta to reflect the real location of the vector, which is in the 2nd quadrant (a is negative, b is positive); a represents the x-axis in the real-imaginary plane, b represents the y-axis.

The angle theta now becomes 150.

.

You can now plug in r and theta into the standard polar form for a number:

Example Question #1 : Express Complex Numbers In Polar Form

Express the complex number  in polar form.

Possible Answers:

Correct answer:

Explanation:

The figure below shows a complex number plotted on the complex plane. The horizontal axis is the real axis and the vertical axis is the imaginary axis.

Vecc

The polar form of a complex number is . We want to find the real and complex components in terms of  and  where  is the length of the vector and  is the angle made with the real axis. 

We use the Pythagorean Theorem to find :

We find  by solving the trigonometric ratio

Using ,

Then we plug  and  into our polar equation to obtain

 

Learning Tools by Varsity Tutors