All Precalculus Resources
Example Questions
Example Question #1 : Conic Sections
Using the information below, determine the equation of the hyperbola.
Foci: and
Eccentricity:
General Information for Hyperbola:
Equation for horizontal transverse hyperbola:
Distance between foci =
Distance between vertices =
Eccentricity =
Center: (h, k)
First determine the value of c. Since we know the distance between the two foci is 12, we can set that equal to .
Next, use the eccentricity equation and the value of the eccentricity provided in the question to determine the value of a.
Eccentricity =
Determine the value of
Determine the center point to identify the values of h and k. Since the y coordinate of the foci are 4, the center point will be on the same line. Hence, .
Since center point is equal distance from both foci, and we know that the distance between the foci is 12, we can conclude that
Center point:
Thus, the equation of the hyperbola is:
Example Question #2 : Conic Sections
Using the information below, determine the equation of the hyperbola.
Foci: and
Eccentricity:
General Information for Hyperbola:
Equation for horizontal transverse hyperbola:
Distance between foci =
Distance between vertices =
Eccentricity =
Center: (h, k)
First determine the value of c. Since we know the distance between the two foci is 8, we can set that equal to .
Next, use the eccentricity equation and the value of the eccentricity provided in the question to determine the value of a.
Eccentricity =
Determine the value of
Determine the center point to identify the values of h and k. Since the y coordinate of the foci are 8, the center point will be on the same line. Hence, .
Since center point is equal distance from both foci, and we know that the distance between the foci is 8, we can conclude that
Center point:
Thus, the equation of the hyperbola is:
Example Question #2 : Pre Calculus
The function is such that
When you take the second derivative of the function , you obtain
What can you conclude about the function at ?
The point is an absolute maximum.
The point is a local maximum.
The point is an inflection point.
The point is an absolute minimum.
The point is a local minimum.
The point is an inflection point.
We have a point at which . We know from the second derivative test that if the second derivative is negative, the function has a maximum at that point. If the second derivative is positive, the function has a minimum at that point. If the second derivative is zero, the function has an inflection point at that point.
Plug in 0 into the second derivative to obtain
So the point is an inflection point.
Example Question #1 : Pre Calculus
Consider the function
Find the maximum of the function on the interval .
Notice that on the interval , the term is always less than or equal to . So the function is largest at the points when . This occurs at and .
Plugging in either 1 or 0 into the original function yields the correct answer of 0.
Example Question #1 : Introductory Calculus
In what -intervals are the relative minimum and relative maximum for the function below?
A cubic function will have at most one relative minimum and one relative maximum. We can determine the zeros be factoring at . From then we only need to determine if the graph is positive or negative in-between the zeros.
The graph is positive between and (plug in ) and negative between 0 and 4 (plug in ). This can also be seen from the graph.
Example Question #1 : Derivatives
What is the minimum of the function ?
The vertex form of a parabola is:
where is the vertex of the parabola.
The function for this problem can be simplified into vetex form of a parabola:
,
with a vertex at .
Since the parabola is concave up, the minimum will be at the vertex of the parabola, which is at .
Example Question #11 : Pre Calculus
What is the y-intercept of the following equation?
The y-intercept can by found by solving the equation when x=0. Thus,
Example Question #12 : Pre Calculus
Determine the y intercept of , where .
In order to determine the y-intercept of , set
Solving for y, when x is equal to zero provides you with the y coordinate for the intercept. Thus the y-intercept is .
Example Question #3 : Graphing Quadratic Functions
What is the -intercept of the function,
?
To find the -intercept we need to find the cooresponding value when .
Substituting into our function we get the following:
Therefore, our -intercept is .
Example Question #4 : Graphing Quadratic Functions
What is the value of the -intercept of ?
The graph does not have a -intercept
To find the -intercept we need to find the cooresponding value when . Therefore, we substitute in and solve:
Certified Tutor