Precalculus : Pre-Calculus

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Limits

What is the

?

Possible Answers:

The limit does not exist

Correct answer:

Explanation:

We first need to simplify the function, we can do this by factoring the numerator and denominator.

If we plug in 3 into the simplified function, we get:

Example Question #1 : Introductory Calculus

What is the

 ?

Possible Answers:

Correct answer:

Explanation:

Substituting  in for  we get the following:

Example Question #5 : Limits

Evaluate the following:

Possible Answers:

limit does not exist

Correct answer:

Explanation:

When evaluating limits at infinity there are three rules to keep in mind:

  1. If the degree of the highest exponent in the numerator is equal to the degree of the highest exponent in the denominator, then the limit is equal to the ratio of the coefficient of the highest exponent in the numerator over the coefficient of the highest exponent in the denominator. Make sure to include signs. 
  2. If the degree of the highest exponent in the numerator is less than the degree of the highest exponent in the denominator, the limit = 0.
  3. If the degree of the highest exponent in the numerator is greater than the degree of the higest exponent in the denominator, divide the highest power in the numerator by the highest power in the denominator and substitute for inifity. You will either subsitute for positive or negative infinity based on what the questions asks you to evaluate the limit at. 

In this case, the degree is higher in the numerator than the denominator (rule #3). Hence, you need to divide the highest powers and evaluate.

Evaluate  as x:

Answer: limit = 

 

 

Example Question #6 : Limits

Evaluate the following:

Possible Answers:

Correct answer:

Explanation:

When evaluating limits at infinity there are three rules to keep in mind:

  1. If the degree of the highest exponent in the numerator is equal to the degree of the highest exponent in the denominator, then the limit is equal to the ratio of the coefficient of the highest exponent in the numerator over the coefficient of the highest exponent in the denominator. Make sure to include signs. 
  2. If the degree of the highest exponent in the numerator is less than the degree of the highest exponent in the denominator, the limit = 0.
  3. If the degree of the highest exponent in the numerator is greater than the degree of the higest exponent in the denominator, divide the highest power in the numerator by the highest power in the denominator and substitute for inifity. You will either subsitute for positive or negative infinity based on what the questions asks you to evaluate the limit at. 

In this case, the both the numerator and denominator have the highest degree of an exponent of 4 (rule #1). Hence, you need to compare the ratio of the coefficients. 

Answer: limit = 

Example Question #1 : Limits

What is the,

  ?

Possible Answers:

Correct answer:

Explanation:

The end behavior of the function  follows the highest powers in both the numerator and denominator. Therefore, to find the limit we need to look only at the term:  as those are the highest powers in the numerator and demoninator.

Now we take the

.

Thus the limit of our original function is also .

Example Question #1 : Trigonometric Identities

According to the trigonometric identities, 

Possible Answers:

Correct answer:

Explanation:

The trigonometric identity , is an important identity to memorize.

Some other identities that are important to know are:

Example Question #1 : Sum And Difference Identities

Use the sum or difference identity to find the exact value: 

Possible Answers:

Correct answer:

Explanation:

Again, here we break up the 165 into  and solve using the sin identity:   

Example Question #1 : Sum And Difference Identities

Is the following equation an identity? 

Possible Answers:

Yes it is an identity.

It cannot be determined from the given information.

No it is not an identity.

Correct answer:

No it is not an identity.

Explanation:

and so this is again not an identity

Example Question #2 : Sum And Difference Identities

Is the following equation an identity? ?

Possible Answers:

No it is not an identity

The question cannot be answered based on the information provided.

Yes it is an identity

Correct answer:

No it is not an identity

Explanation:

Therefore, this is not an identity.

Example Question #1 : Trigonometric Identities

Use the sum or difference identity to find the exact value: 

Possible Answers:

Correct answer:

Explanation:

Using the identity, we can break up the 255 into and then solve:   

Learning Tools by Varsity Tutors