Precalculus : Graphs and Inverses of Trigonometric Functions

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #52 : Graphing The Sine And Cosine Functions

Find the amplitude of the following trig function:  

Possible Answers:

Correct answer:

Explanation:

Rewrite  so that it is in the form of:

The absolute value of  is the value of the amplitude.

Example Question #4 : Find The Amplitude Of A Sine Or Cosine Function

Find the amplitude of the function.

Possible Answers:

Correct answer:

Explanation:

For the sine function

 where 

the amplitude is given as  .

As such the amplitude for the given function

 is

.

Example Question #3 : Period And Amplitude

Which of the given functions has the greatest amplitude?

Possible Answers:

Correct answer:

Explanation:

The amplitude of a function is the amount by which the graph of the function travels above and below its midline. When graphing a sine function, the value of the amplitude is equivalent to the value of the coefficient of the sine. Similarly, the coefficient associated with the x-value is related to the function's period. The largest coefficient associated with the sine in the provided functions is 2; therefore the correct answer is .

The amplitude is dictated by the coefficient of the trigonometric function. In this case, all of the other functions have a coefficient of one or one-half.

Example Question #1 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions

Given the function , determine the equation of all the vertical asymptotes across the domain.  Let  be an integer.

Possible Answers:

Correct answer:

Explanation:

For the function , it is not necessary to graph the function.  The y-intercept does not affect the location of the asymptotes.

Recall that the parent function  has an asymptote at  for every  period.  

Set the inner quantity of  equal to zero to determine the shift of the asymptote.

This indicates that there is a zero at , and the tangent graph has shifted  units to the right.  As a result, the asymptotes must all shift  units to the right as well.  The period of the tangent graph is .

Example Question #1 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions

Which of the choices represents asymptote(s), if any?   

Possible Answers:

Correct answer:

Explanation:

Factor the numerator and denominator.

Notice that the  terms will cancel.  The hole will be located at  because this is a removable discontinuity.

The denominator cannot be equal to zero.  Set the denominator to find the location where the x-variable cannot exist.

The asymptote is located at .

Example Question #1 : Solving Exponential Functions

Find the vertical asymptote of the equation.

Possible Answers:

There are no vertical asymptotes.

Correct answer:

Explanation:

To find the vertical asymptotes, we set the denominator of the function equal to zero and solve.

Example Question #4 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions

Given the function , determine the equation of all vertical asymptotes across the domain.  Let  be any integer.

Possible Answers:

Correct answer:

Explanation:

We know that the parent function  has vertical asymptotes at  where  is any integer. We will set the quantity inside the  function equal to zero to solve for the shift of the asymptote.

 

Now we must add this to the asymptotes of the parent function:

Example Question #5 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions

Given the function , determine the equation of all vertical asymptotes across the domain.  Let  be any integer.

Possible Answers:

Correct answer:

Explanation:

We know that the parent function  has asymptotes at  where  is any integer.  We will set the quantity within the  function equal to zero in order to find the shift of the asymptote. 

 

Now we must add this to the asymptotes of the parent function:

Example Question #6 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions

Which of the following represents the asymptotes for the general parent function ?

Possible Answers:

Correct answer:

Explanation:

 If you do not have these asymptotes memorized, they can be easily derived.  Write  in terms of .

Now we need to solve for  since it is the denominator of the function.  When the denominator of a function is equal to zero, there is a vertical asymptote because that function is then undefined. 

 when .  So for any integer , we say that there is a vertical asymptote for  when .

Example Question #1 : Find The Equations Of Vertical Asymptotes Of Tangent, Cosecant, Secant, And Cotangent Functions

Assume that there is a vertical asymptote for the function    at , solve for  from the equation of all vertical asymptotes at .

Possible Answers:

Correct answer:

Explanation:

We know that the parent function  has vertical asymptotes at .  So now we will set the inner quantity of the  function equal to zero to find the shift of the asymptote.

Now we will add this to the parent function equation for vertical asymptotes

Now we will set this equation for the given vertical asymptote at

Learning Tools by Varsity Tutors