Precalculus : Exponential and Logarithmic Functions

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Solve Logarithmic Equations

.

Solve for 

Possible Answers:

Correct answer:

Explanation:

First bring the inside exponent in front of the natural log.

.

Next simplify the first term and bring all the terms on one side of the equation. 

.

Next, let set 

, so .

Now use the quadratic formula to solve for

 

and thus,  and .

Now substitute  with .

So,  since  and .

Thus, 

Example Question #6 : Solve Logarithmic Equations

Solve the logarithmic equation: 

Possible Answers:

None of the other answers.

Correct answer:

Explanation:

Exponentiate each side to cancel the natural log:

Square both sides:

Isolate x:

Example Question #1166 : Pre Calculus

Solve for x:

Possible Answers:

Correct answer:

Explanation:

The base of a logarithm is 10 by default:

convert to exponent to isolate x

subtract 1 from both sides

divide both sides by 2

Example Question #1167 : Pre Calculus

Solve for x:

Possible Answers:

Correct answer:

Explanation:

First, condense the left side into one logarithm:

convert to an exponent

multiply both sides by 7

Example Question #1168 : Pre Calculus

Solve for x:

Possible Answers:

no solution

Correct answer:

Explanation:

First, consolidate the left side into one logarithm:

convert to an exponent

subtract 64 from both sides

now we can solve using the quadratic formula:

Example Question #1169 : Pre Calculus

Solve the following logarithmic equation:

Possible Answers:

Correct answer:

Explanation:

We must first use some properties of logs to rewrite the equation.  First, using the power rule, which says

we can rewrie the left side of the equation, as below:

Now, we want to use the product property of logarithms to condense the right side into just one log, as below:

Because the logs are both base 10, we can simply set the insides equal, like this:

Now we have a polynomial to solve.

Using the quadratic formula to solve for x

 

Example Question #71 : Exponential And Logarithmic Functions

Solve this logarithm for

Possible Answers:

None of these.

Correct answer:

Explanation:

Divide both sides by 25 to isolate the exponential function:

Take the natural log of both sides:

Solve for x:

Example Question #71 : Exponential And Logarithmic Functions

Solve the following logarithmic equation.  

 

 

Possible Answers:

Correct answer:

Explanation:

In order to solve the logarithmic equation, we use the following property

As such

And converting from logarithmic form to exponential form

we get

Solving for x

And because the square of a difference is given as this equation through factoring

we have

which implies

Example Question #11 : Solve Logarithmic Equations

Express the log in its expanded form:

Possible Answers:

None of the other answers

Correct answer:

Explanation:

You need to know the Laws of Logarithms in order to solve this problem. The ones specifically used in this problem are the following:

Let's take this one variable at a time starting with expanding z:

Now y:

And finally expand x:

Example Question #71 : Exponential And Logarithmic Functions

What is  equivalent to?

Possible Answers:

Correct answer:

Explanation:

Using the properties of logarithms,

the expression can be rewritten as

 

 which simplifies to .

Learning Tools by Varsity Tutors