Precalculus : Conic Sections

Study concepts, example questions & explanations for Precalculus

varsity tutors app store varsity tutors android store

Example Questions

Example Question #1 : Parabolas

Find the location of the vertex of the following parabola:

\displaystyle y=5x^2-25x-10

Possible Answers:

\displaystyle (2.5,-41.25)

\displaystyle (-2.5,21.25)

\displaystyle (-2.5,-21.25)

\displaystyle (0,0)

\displaystyle (2.5,21.25)

Correct answer:

\displaystyle (2.5,-41.25)

Explanation:

The vertex can be thought of as the center of a parabola. Begin by finding the axis of symmetry with the following formula:

\displaystyle x=\frac{-b}{2a}

Where b and a come from the standard equation of a parabola:

\displaystyle y=ax^2+bx+c

So given our parabola

\displaystyle y=5x^2-25x-10

\displaystyle x=\frac{--25}{2\cdot5}=\frac{25}{10}=2.5

This gives us the x-coordinate of our vertex. find the y-coordinate by plugging in our x-coordinate.

\displaystyle y=5\cdot (2.5)^2-25\cdot (2.5)-10=-41.25

So our vertex is:

\displaystyle (2.5,-41.25)

Example Question #1 : Find The Vertex And The Axis Of Symmetry Of A Parabola

Find the vertex of the parabola:  \displaystyle y=-5x^2+3x-10

Possible Answers:

\displaystyle x=-\frac{3}{10}

\displaystyle x=\frac{5}{3}

\displaystyle x=-\frac{5}{3}

\displaystyle x=\frac{3}{10}

\displaystyle x=\frac{10}{3}

Correct answer:

\displaystyle x=\frac{3}{10}

Explanation:

The polynomial is already in \displaystyle y=ax^2+bx+c format.

To find the vertex, use the following equation:

\displaystyle x=-\frac{b}{2a}

Substitute the coefficients and solve for the vertex.

\displaystyle x=-\frac{3}{2(-5)}=\frac{3}{10}

The vertex is at \displaystyle x=\frac{3}{10}.

Example Question #2 : Find The Vertex And The Axis Of Symmetry Of A Parabola

Find the vertex and the equation of the axis of symmetry for \displaystyle y=-1-2x^2.

Possible Answers:

Correct answer:

Explanation:

Rewrite \displaystyle y=-1-2x^2 in standard parabolic form, \displaystyle ax^2+bx+c.

\displaystyle y=-2x^2-1

\displaystyle a=-2

\displaystyle b=0

\displaystyle c=-1

Write the vertex formula and substitute the values.

\displaystyle x=-\frac{b}{2a}=-\frac{0}{2(-2)}=0

The equation of the axis of symmetry is \displaystyle x=0.

Substitute this value back into the original equation \displaystyle y=-1-2x^2.

\displaystyle y=-1-2(0)^2=-1

The vertex is at \displaystyle (0,-1).

Example Question #6 : Find The Vertex And The Axis Of Symmetry Of A Parabola

Find the axis of symmetry and the vertex of the parabola given by the following equation:

\displaystyle y=2x^2-28x+6

Possible Answers:

Vertex at \displaystyle (7,-92)

Axis of symmetry at \displaystyle x=7

Vertex at \displaystyle (-7,92)

Axis of symmetry at \displaystyle x=-7

Vertex at \displaystyle (7,92)

Axis of symmetry at \displaystyle x=7

Vertex at \displaystyle (-7,300)

Axis of symmetry at \displaystyle x=-7

Correct answer:

Vertex at \displaystyle (7,-92)

Axis of symmetry at \displaystyle x=7

Explanation:

Find the axis of symmetry and the vertex of the parabola given by the following equation:

\displaystyle y=2x^2-28x+6

To find the axis of symmetry of a parabola in standard form, \displaystyle y=ax^2+bx+c, use the following equation:

\displaystyle AoS=\frac{-b}{2a}

So...

\displaystyle AoS=\frac{-(-28)}{2\cdot2}=\frac{28}{4}=7

This means that we have an axis of symmetry at \displaystyle x=7. Or, to put it more plainly, at \displaystyle x=7 we could draw a vertical line which would perfectly cut our parabola in half!

So, we are halfway there, now we need the coordinates of our vertex. We already know the x-coordinate, which is 7. To find the y-coordinate, simply plug 7 into the parabola's formula and solve!

\displaystyle y=2(7)^2-28(7)+6=98-196+6=-92

This makes our vertex the point \displaystyle (7,-92)

Example Question #1 : Find The Vertex And The Axis Of Symmetry Of A Parabola

Find the vertex of the parabola:

\displaystyle y = x^2+6x+2

Possible Answers:

\displaystyle (-2,-3)

\displaystyle (3,4)

\displaystyle (-4,6)

\displaystyle (-3,-7)

\displaystyle (2,-6)

Correct answer:

\displaystyle (-3,-7)

Explanation:

The vertex form for a parabola is given below:

\displaystyle y = (x-h)^2+k

\displaystyle y=x^2 + 6x +2 \displaystyle = (x^2 + 6x) +2

To complete the square, take the coefficient next to the x term, divide by \displaystyle 2 and raise the number to the second power. In this case, \displaystyle (\frac{6}{2})^2 = 9. Then take value and add it to add inside the parenthesis and subtract on the outside. 

\displaystyle y = (x^2 + 6x+ 9)+2-9

Now factor and simplify:

\displaystyle y = (x+3)^2 - 7

Fromt the values of \displaystyle h and \displaystyle k, the vertex is at \displaystyle (-3,-7)

Example Question #1 : Find The Vertex And The Axis Of Symmetry Of A Parabola

Find the vertex of the parabola:

\displaystyle y = \frac{1}{2}x^2+5x

Possible Answers:

\displaystyle (5,25)

\displaystyle (-5,-25)

\displaystyle (-5,25)

\displaystyle (5,\frac{25}{2})

\displaystyle (-5,-\frac{25}{2})

Correct answer:

\displaystyle (-5,-\frac{25}{2})

Explanation:

The vertex form for a parabola is given below:

\displaystyle y = (x-h)^2+k

\displaystyle \frac{1}{2}x^2 + 5x  \displaystyle = \frac{1}{2}(x^2 + 10x)

To complete the square, take the value next to the x term, divide by 2 and raise the number to the second power. In this case,\displaystyle (\frac{10}{2})^2 = 25. Then take value and add it to add inside the parenthesis and subtract on the outside. 

\displaystyle y = \frac{1}{2}(x^2 + 10x+ 25)-\frac{25}{2}

Now factor and simplify:

\displaystyle y =\frac{1}{2} (x+5)^2 - \frac{25}{2}

Fromt the values of h and k, the vertex is at \displaystyle (-5,-\frac{25}{2})

Example Question #9 : Find The Vertex And The Axis Of Symmetry Of A Parabola

Find the vertex of the parabola:

\displaystyle y = -2x^2+12

Possible Answers:

\displaystyle (-3,-18)

\displaystyle (3,4)

\displaystyle (3,18)

\displaystyle (3,-9)

\displaystyle (3,9)

Correct answer:

\displaystyle (3,18)

Explanation:

The vertex form for a parabola is given below:

\displaystyle y = (x-h)^2+k

\displaystyle y = -2x^2+12 = \displaystyle -2(x^2-6x)  

To complete the square, take the value next to the x term, divide by \displaystyle 2 and raise the number to the second power. In this case, \displaystyle (-\frac{6}{2})^2=9. Then take value and add it to add inside the parenthesis and subtract on the outside. Remember to distribute before subtracting to the outside.

\displaystyle y = -2(x^2-6x+9-9) = -2(x^2-6x+9)+18 

Now factor and simplify:

\displaystyle y =-2(x-3)^2 +18

From the values of \displaystyle h and \displaystyle k, the vertex is at \displaystyle (3,18)

Example Question #1 : Find The Vertex And The Axis Of Symmetry Of A Parabola

Find the vertex of the parabola:

\displaystyle y= (x+2)(x-4)

Possible Answers:

\displaystyle (1,-9)

\displaystyle (1,4)

\displaystyle (2,-9)

\displaystyle (2,-5)

\displaystyle (2,4)

Correct answer:

\displaystyle (1,-9)

Explanation:

The vertex form for a parabola is given below:

\displaystyle y = (x-h)^2+k

Factor the equation and transform it into the vertex form.

\displaystyle y= (x+2)(x-4) \displaystyle = x^2-2x-8

To complete the square, take the value next to the x term, divide by \displaystyle 2 and raise the number to the second power. In this case, \displaystyle (-\frac{2}{2})^2=1. Then take value and add it to add inside the parenthesis and subtract on the outside. 

\displaystyle y = (x^2-2x+1-1)-8 = (x^2-2x+1)-1-8 

Now factor and simplify:

\displaystyle y =(x-1)^2 -9

From the values of \displaystyle h and \displaystyle k, the vertex is at \displaystyle (1,-9)

Example Question #51 : Conic Sections

Find the vertex of the parabola:

\displaystyle y = -\frac{1}{3}x^2+3x+7

Possible Answers:

\displaystyle (-\frac{1}{2},-7)

\displaystyle (-4,12)

\displaystyle (-1,12)

\displaystyle (-\frac{1}{2},\frac{85}{12})

\displaystyle (2,-4)

Correct answer:

\displaystyle (-\frac{1}{2},\frac{85}{12})

Explanation:

The vertex form for a parabola is given below:

\displaystyle y = (x-h)^2+k

\displaystyle y = -\frac{1}{3}x^2+3x+7  \displaystyle = -\frac{1}{3}(x^2-x )+7

To complete the square, take the value next to the x term, divide by 2 and raise the number to the second power. In this case, \displaystyle (-\frac{1}{2})^2 =\frac{1}{4}. Then take value and add it to add inside the parenthesis and subtract on the outside. 

\displaystyle y = -\frac{1}{3}(x^2 - x+ \frac{1}{4}- \frac{1}{4})+7 =-\frac{1}{3}(x^2 - x+ \frac{1}{4})+7+\frac{1}{12}

Now factor and simplify:

\displaystyle y =-\frac{1}{3} (x-\frac{1}{2})^2 + \frac{85}{12}

Fromt the values of \displaystyle h and \displaystyle k, the vertex is at \displaystyle (-\frac{1}{2},\frac{85}{12})

Example Question #51 : Conic Sections

Write an equation for a circle.

Determine the equation for a circle in standard form with a radius of \displaystyle 3, and centered at the point \displaystyle (-3,4).

Possible Answers:

\displaystyle (x+3)^{^{2}}+(y-4)^{^{2}}=9

\displaystyle y=\sqrt{(x+3)^{2}+9}+4

\displaystyle (x-3)^{^{2}}+(y-4)^{^{2}}=9

\displaystyle (x-3)^{^{2}}+(y+4)^{^{2}}=3

\displaystyle (x^{2}+3)+(y^{2}-4)=9

Correct answer:

\displaystyle (x+3)^{^{2}}+(y-4)^{^{2}}=9

Explanation:

The standard form for the equation of a circle with radius \displaystyle r, and centered at point \displaystyle (a,b) is

\displaystyle (x-a)^{2}+(y-b)^{2}=r^{2}.

Here, \displaystyle a=-3, b=4, r=3, so the equation is

\displaystyle (x+3)^{^{2}}+(y-4)^{^{2}}=9.

 

Note: one way to think of this equation is to remember the Pythagorean Theorem.

If the center is at the origin then the equation is

\displaystyle x^{2}+y^{2}=r^{2}.

This describes a right triangle for any x and y that satisfy this equation.  Here r is the hypotenues, but when all values of x and y are used it stays the same and the points map out a circle with radius r.

The rules of graph translation apply in the same way as with any function.  That is they move the origin in the opposite direction by a and/or b. 

 

Learning Tools by Varsity Tutors