New SAT Math - No Calculator : New SAT

Study concepts, example questions & explanations for New SAT Math - No Calculator

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : Solve Problems Leading To Two Linear Equations: Ccss.Math.Content.8.Ee.C.8c

Adult tickets to the zoo sell for ; child tickets sell for . On a given day, the zoo sold  tickets and raised  in admissions. How many adult tickets were sold?

Possible Answers:

Correct answer:

Explanation:

Let  be the number of adult tickets sold. Then the number of child tickets sold is .

The amount of money raised from adult tickets is ; the amount of money raised from child tickets is . The sum of these money amounts is , so the amount of money raised can be defined by the following equation:

To find the number of adult tickets sold, solve for :

 adult tickets were sold.

Example Question #675 : Algebra

Solve the following story problem:

Jack and Aaron go to the sporting goods store. Jack buys a glove for  and  wiffle bats for  each. Jack has  left over. Aaron spends all his money on  hats for  each and  jerseys. Aaron started with  more than Jack. How much does one jersey cost?

Possible Answers:

Correct answer:

Explanation:

Let's call "" the cost of one jersey (this is the value we want to find)

Let's call the amount of money Jack starts with ""

Let's call the amount of money Aaron starts with ""

We know Jack buys a glove for  and  bats for  each, and then has  left over after. Thus:

simplifying,  so Jack started with 

We know Aaron buys  hats for  each and  jerseys (unknown cost "") and spends all his money.

The last important piece of information from the problem is Aaron starts with  dollars more than Jack. So:

From before we know:

Plugging in:

so Aaron started with 

Finally we plug  into our original equation for A and solve for x:

Thus one jersey costs 

Example Question #1 : Translating Words To Linear Equations

Read, but do not solve, the following problem:

Adult tickets to the zoo sell for $11; child tickets sell for $7. One day, 6,035 tickets were sold, resulting in $50,713 being raised. How many adult and child tickets were sold? 

If  and  stand for the number of adult and child tickets, respectively, which of the following systems of equations can be used to answer this question?

Possible Answers:

Correct answer:

Explanation:

6,035 total tickets were sold, and the total number of tickets is the sum of the adult and child tickets, .

Therefore, we can say .

The amount of money raised from adult tickets is $11 per ticket mutiplied by  tickets, or  dollars; similarly,  dollars are raised from child tickets. Add these together to get the total amount of money raised:

These two equations form our system of equations.

Example Question #81 : New Sat Math Calculator

A blue train leaves San Francisco at 8AM going 80 miles per hour. At the same time, a green train leaves Los Angeles, 380 miles away, going 60 miles per hour. Assuming that they are headed towards each other, when will they meet, and about how far away will they be from San Francisco? 

Possible Answers:

Around 2:45AM, about 200.15 miles away from San Francisco

Around 10:43AM, about 217.12 miles away from San Francisco

Around 3AM the next day, about 1,520 miles away from San Francisco

The two trains will never meet.

Correct answer:

Around 10:43AM, about 217.12 miles away from San Francisco

Explanation:

This system can be solved a variety of ways, including graphing. To solve algebraically, write an equation for each of the different trains. We will use y to represent the distance from San Francisco, and x to represent the time since 8AM.

The blue train travels 80 miles per hour, so it adds 80 to the distance from San Francisco every hour. Algebraically, this can be written as .

The green train starts 380 miles away from San Francisco and subtracts distance every hour. This equation should be .

To figure out where these trains' paths will intersect, we can set both right sides equal to each other, since the left side of each is .

add  to both sides

divide both sides by 140

Since we wrote the equation meaning time for , this means that the trains will cross paths after 2.714 hours have gone by. To figure out what time it will be then, figure out how many minutes are in 0.714 hours by multiplying . So the trains intersect after 2 hours and about 43 minutes, so at 10:43AM.

To figure out how far from San Francisco they are, figure out how many miles the blue train could have gone in 2.714 hours. In other words, plug 2.714 back into the equation , giving you an answer of .

Example Question #2092 : Psat Mathematics

How many  are in 

Possible Answers:

Correct answer:

Explanation:

To solve this problem we can make proportions.

We know that  and we can use  as our unknown. 

Next, we want to cross multiply and divide to isolate the  on one side. 

The  will cancel and we are left with 

Example Question #181 : Ratio And Proportion

How many  are in 

Possible Answers:

Correct answer:

Explanation:

To solve this problem we can make proportions.

We know that  and we can use  as our unknown. 

Next, we want to cross multiply and divide to isolate the  on one side. 

The  will cancel and we are left with 

Example Question #1 : Solving Word Problems With One Unit Conversion

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Example Question #2 : Solving Word Problems With One Unit Conversions

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Example Question #753 : Ssat Middle Level Quantitative (Math)

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Example Question #2102 : Psat Mathematics

A carpenter is making a model house and he buys  of crown moulding to use as accent pieces. He needs  of the moulding for the house. How many feet of the material does he need to finish the model?

Possible Answers:

Correct answer:

Explanation:

We can solve this problem using ratios. There are  in . We can write this relationship as the following ratio:

We know that the carpenter needs  of material to finish the house. We can write this as a ratio using the variable  to substitute the amount of feet.

Now, we can solve for  by creating a proportion using our two ratios.

Cross multiply and solve for .

Simplify.

Divide both sides by .

Solve.

Reduce.

The carpenter needs  of material.

Learning Tools by Varsity Tutors