All New SAT Math - Calculator Resources
Example Questions
Example Question #2 : How To Find The Angle Of A Sector
The length of an arc, , of a circle is and the radius, , of the circle is . What is the measure in degrees of the central angle, , formed by the arc ?
The circumference of the circle is .
The length of the arc S is .
A ratio can be established:
Solving for yields 90o.
Note: This makes sense. Since the arc S was one-fourth the circumference of the circle, the central angle formed by arc S should be one-fourth the total degrees of a circle.
Example Question #3224 : Sat Mathematics
Below is a table of earnings from playing blackjack.
Find the rate at which this is depreciating at each month.
To determine what the rate is, we need to divide the proceeding value by the preceding value, for instance.
If we do this for the rest of the values, we will get the common ratio of .
Example Question #22 : How To Find A Solution Set
Below is a table of earnings from playing blackjack.
Find the equation of depreciation.
In general, an equation of depreciation looks like the following.
, where is the starting amount, is the common ratio, and is time.
For us , , and .
Example Question #1 : How To Find Arithmetic Mean
What is the average number of apples a student has?
To calculate the average number of apples a student has, the following formula is used.
First, calculate the total number of apples there are. To do this multiply the number of apples by the number of students that have that many apples.
This number divided by the total number of students.
Example Question #64 : How To Find Order Of Operations
Find the Ratio of Solution 1 to Solution 2 in the following quadratic equation, where Solution 1 is and is a constant.
The first step is to solve for , so we will plug in the solution.
So our quadratic equation becomes
Since we know one solution, we can do synthetic division to figure out the other solution.
We can guess and check for the other solution which is , so in equation form we have
The ratio is then .
Example Question #1 : Translating Words To Linear Equations
We have three dogs: Joule, Newton, and Toby. Joule is three years older than twice Newton's age. Newton is Toby's age younger than eleven years. Toby is one year younger than Joules age. Find the age of each dog.
Joule: 12 years
Newton: 1 year
Toby: 5 year
Joule: 9 years
Newton: 3 years
Toby: 8 year
Joule: 5 years
Newton: Not born yet
Toby: 1 year
Joule: 8 years
Newton: 4 years
Toby: 8 year
none of these
Joule: 9 years
Newton: 3 years
Toby: 8 year
First, translate the problem into three equations. The statement, "Joule is three years older than twice Newton's age" is mathematically translated as
where represents Joule's age and is Newton's age.
The statement, "Newton is Toby's age younger than eleven years" is translated as
where is Toby's age.
The third statement, "Toby is one year younger than Joule" is
.
So these are our three equations. To figure out the age of these dogs, first I will plug the third equation into the second equation. We get
Plug this equation into the first equation to get
Solve for . Add to both sides
Divide both sides by 3
So Joules is 9 years old. Plug this value into the third equation to find Toby's age
Toby is 8 years old. Use this value to find Newton's age using the second equation
Now, we have the age of the following dogs:
Joule: 9 years
Newton: 3 years
Toby: 8 years
Example Question #11 : How To Find The Solution For A System Of Equations
Teachers at an elementary school have devised a system where a student's good behavior earns him or her tokens. Examples of such behavior include sitting quietly in a seat and completing an assignment on time. Jim sits quietly in his seat 2 times and completes assignments 3 times, earning himself 27 tokens. Jessica sits quietly in her seat 9 times and completes 6 assignments, earning herself 69 tokens. How many tokens is each of these two behaviors worth?
Sitting quietly and completing an assignment are each worth 4 tokens.
Sitting quietly is worth 7 tokens and completing an assignment is worth 3.
Sitting quietly is worth 3 tokens and completing an assignment is worth 9.
Sitting quietly is worth 3 tokens and completing an assignment is worth 7.
Sitting quietly is worth 9 tokens and completing an assignment is worth 3.
Sitting quietly is worth 3 tokens and completing an assignment is worth 7.
Since this is a long word problem, it might be easy to confuse the two behaviors and come up with the wrong answer. Let's avoid this problem by turning each behavior into a variable. If we call "sitting quietly" and "completing assignments" , then we can easily construct a simple system of equations,
and
.
We can multiply the first equation by to yield .
This allows us to cancel the terms when we add the two equations together. We get , or .
A quick substitution tells us that . So, sitting quietly is worth 3 tokens and completing an assignment on time is worth 7.
Example Question #6 : Single Variable Algebra
Adult tickets to the zoo sell for ; child tickets sell for . On a given day, the zoo sold tickets and raised in admissions. How many adult tickets were sold?
Let be the number of adult tickets sold. Then the number of child tickets sold is .
The amount of money raised from adult tickets is ; the amount of money raised from child tickets is . The sum of these money amounts is , so the amount of money raised can be defined by the following equation:
To find the number of adult tickets sold, solve for :
adult tickets were sold.
Example Question #2 : Translating Words To Linear Equations
Solve the following story problem:
Jack and Aaron go to the sporting goods store. Jack buys a glove for and wiffle bats for each. Jack has left over. Aaron spends all his money on hats for each and jerseys. Aaron started with more than Jack. How much does one jersey cost?
Let's call "" the cost of one jersey (this is the value we want to find)
Let's call the amount of money Jack starts with ""
Let's call the amount of money Aaron starts with ""
We know Jack buys a glove for and bats for each, and then has left over after. Thus:
simplifying, so Jack started with
We know Aaron buys hats for each and jerseys (unknown cost "") and spends all his money.
The last important piece of information from the problem is Aaron starts with dollars more than Jack. So:
From before we know:
Plugging in:
so Aaron started with
Finally we plug into our original equation for A and solve for x:
Thus one jersey costs
Example Question #3 : Translating Words To Linear Equations
Read, but do not solve, the following problem:
Adult tickets to the zoo sell for $11; child tickets sell for $7. One day, 6,035 tickets were sold, resulting in $50,713 being raised. How many adult and child tickets were sold?
If and stand for the number of adult and child tickets, respectively, which of the following systems of equations can be used to answer this question?
6,035 total tickets were sold, and the total number of tickets is the sum of the adult and child tickets, .
Therefore, we can say .
The amount of money raised from adult tickets is $11 per ticket mutiplied by tickets, or dollars; similarly, dollars are raised from child tickets. Add these together to get the total amount of money raised:
These two equations form our system of equations.
Certified Tutor
Certified Tutor