New SAT Math - Calculator : New SAT Math - Calculator

Study concepts, example questions & explanations for New SAT Math - Calculator

varsity tutors app store varsity tutors android store

Example Questions

Example Question #2 : How To Find The Angle Of A Sector

The length of an arc, , of a circle is  and the radius, , of the circle is . What is the measure in degrees of the central angle, , formed by the arc ?

Possible Answers:

Correct answer:

Explanation:

The circumference of the circle is .

The length of the arc S is .

A ratio can be established:

Solving for yields 90o

Note: This makes sense. Since the arc S was one-fourth the circumference of the circle, the central angle formed by arc S should be one-fourth the total degrees of a circle.

Example Question #3224 : Sat Mathematics

Below is a table of earnings from playing blackjack.

 

Find the rate at which this is depreciating at each month.

Possible Answers:

Correct answer:

Explanation:

To determine what the rate is, we need to divide the proceeding value by the preceding value, for instance.

If we do this for the rest of the values, we will get the common ratio of .

 

Example Question #22 : How To Find A Solution Set

Below is a table of earnings from playing blackjack.

 

Find the equation of depreciation. 

Possible Answers:

Correct answer:

Explanation:

In general, an equation of depreciation looks like the following.

, where  is the starting amount,  is the common ratio, and  is time.

For us , and .

 

Example Question #1 : How To Find Arithmetic Mean

Screen_shot_2013-05-17_at_12.12.58_am

What is the average number of apples a student has?

Possible Answers:

Correct answer:

Explanation:

To calculate the average number of apples a student has, the following formula is used.

First, calculate the total number of apples there are. To do this multiply the number of apples by the number of students that have that many apples.

Screen_shot_2013-05-17_at_12.12.58_am

This number divided by the total number of students.

Example Question #64 : How To Find Order Of Operations

Find the Ratio of Solution 1 to Solution 2 in the following quadratic equation, where Solution 1 is   and  is a constant.

 

Possible Answers:

Correct answer:

Explanation:

The first step is to solve for , so we will plug in the solution.

So our quadratic equation becomes

Since we know one solution, we can do synthetic division to figure out the other solution.

We can guess and check for the other solution which is , so in equation form we have

The ratio is then .

 

      

 

 

Example Question #1 : Translating Words To Linear Equations

We have three dogs: Joule, Newton, and Toby. Joule is three years older than twice Newton's age. Newton is Toby's age younger than eleven years. Toby is one year younger than Joules age. Find the age of each dog.

Possible Answers:

Joule: 12 years

Newton: 1 year

Toby: 5 year

Joule: 9 years

Newton: 3 years

Toby: 8 year

Joule: 5 years

Newton: Not born yet

Toby: 1 year

Joule: 8 years

Newton: 4 years

Toby: 8 year

none of these

Correct answer:

Joule: 9 years

Newton: 3 years

Toby: 8 year

Explanation:

First, translate the problem into three equations. The statement, "Joule is three years older than twice Newton's age" is mathematically translated as

where  represents Joule's age and  is Newton's age.

The statement, "Newton is Toby's age younger than eleven years" is translated as

where  is Toby's age.

The third statement, "Toby is one year younger than Joule" is

.

So these are our three equations. To figure out the age of these dogs, first I will plug the third equation into the second equation. We get

Plug this equation into the first equation to get

Solve for . Add  to both sides

Divide both sides by 3

So Joules is 9 years old. Plug this value into the third equation to find Toby's age

Toby is 8 years old. Use this value to find Newton's age using the second equation

Now, we have the age of the following dogs:

Joule: 9 years

Newton: 3 years

Toby: 8 years

Example Question #11 : How To Find The Solution For A System Of Equations

Teachers at an elementary school have devised a system where a student's good behavior earns him or her tokens. Examples of such behavior include sitting quietly in a seat and completing an assignment on time. Jim sits quietly in his seat 2 times and completes assignments 3 times, earning himself 27 tokens. Jessica sits quietly in her seat 9 times and completes 6 assignments, earning herself 69 tokens. How many tokens is each of these two behaviors worth?

Possible Answers:

Sitting quietly and completing an assignment are each worth 4 tokens.

Sitting quietly is worth 7 tokens and completing an assignment is worth 3.

Sitting quietly is worth 3 tokens and completing an assignment is worth 9.

Sitting quietly is worth 3 tokens and completing an assignment is worth 7.

Sitting quietly is worth 9 tokens and completing an assignment is worth 3.

Correct answer:

Sitting quietly is worth 3 tokens and completing an assignment is worth 7.

Explanation:

Since this is a long word problem, it might be easy to confuse the two behaviors and come up with the wrong answer. Let's avoid this problem by turning each behavior into a variable. If we call "sitting quietly"  and "completing assignments" , then we can easily construct a simple system of equations, 

 

and 

.

We can multiply the first equation by  to yield .

This allows us to cancel the  terms when we add the two equations together. We get , or .

A quick substitution tells us that . So, sitting quietly is worth 3 tokens and completing an assignment on time is worth 7.

Example Question #6 : Single Variable Algebra

Adult tickets to the zoo sell for ; child tickets sell for . On a given day, the zoo sold  tickets and raised  in admissions. How many adult tickets were sold?

Possible Answers:

Correct answer:

Explanation:

Let  be the number of adult tickets sold. Then the number of child tickets sold is .

The amount of money raised from adult tickets is ; the amount of money raised from child tickets is . The sum of these money amounts is , so the amount of money raised can be defined by the following equation:

To find the number of adult tickets sold, solve for :

 adult tickets were sold.

Example Question #2 : Translating Words To Linear Equations

Solve the following story problem:

Jack and Aaron go to the sporting goods store. Jack buys a glove for  and  wiffle bats for  each. Jack has  left over. Aaron spends all his money on  hats for  each and  jerseys. Aaron started with  more than Jack. How much does one jersey cost?

Possible Answers:

Correct answer:

Explanation:

Let's call "" the cost of one jersey (this is the value we want to find)

Let's call the amount of money Jack starts with ""

Let's call the amount of money Aaron starts with ""

We know Jack buys a glove for  and  bats for  each, and then has  left over after. Thus:

simplifying,  so Jack started with 

We know Aaron buys  hats for  each and  jerseys (unknown cost "") and spends all his money.

The last important piece of information from the problem is Aaron starts with  dollars more than Jack. So:

From before we know:

Plugging in:

so Aaron started with 

Finally we plug  into our original equation for A and solve for x:

Thus one jersey costs 

Example Question #3 : Translating Words To Linear Equations

Read, but do not solve, the following problem:

Adult tickets to the zoo sell for $11; child tickets sell for $7. One day, 6,035 tickets were sold, resulting in $50,713 being raised. How many adult and child tickets were sold? 

If  and  stand for the number of adult and child tickets, respectively, which of the following systems of equations can be used to answer this question?

Possible Answers:

Correct answer:

Explanation:

6,035 total tickets were sold, and the total number of tickets is the sum of the adult and child tickets, .

Therefore, we can say .

The amount of money raised from adult tickets is $11 per ticket mutiplied by  tickets, or  dollars; similarly,  dollars are raised from child tickets. Add these together to get the total amount of money raised:

These two equations form our system of equations.

Learning Tools by Varsity Tutors