MCAT Biology : Cell Signaling

Study concepts, example questions & explanations for MCAT Biology

varsity tutors app store varsity tutors android store

Example Questions

Example Question #11 : Cell Signaling

Sildenafil (commonly called Viagra) is a common drug used to treat erectile dysfunction and pulmonary arterial hypertension. Sildenafil's effect comes from its ability to cause vasodilation in smooth muscle cells. For this problem, we're only going to consider its effects on erections in males. 

Erectile dysfunction is a common medical problem in older men. Its most significant effect is the prevention of erections. Erections occur when there is an increase in blood flow via enlargement of an artery (vasodilation). Understanding the mechanism by which vasodilations occur is important in order to treat erectile dysfunction.  

Erections occur when nitric oxide  is released from an area in the penis and binds to guanylate cyclase in other cells of the penis, which creates cyclic guanosine monophosphate (cGMP) from GTP. cGMP causes a relaxation of the arterial wall in order to increase blood flow to the region, thereby causing an erection. cGMP is broken down over time by cGMP-specific phosphodiesterase type 5 (PDE5) into GTP, which reverses the effect and causes vasoconstriction on the arterial wall. Combatting this effect is the major method by which Viagra functions. 

Which of the following is not a possible mechanism by which Sildenafil treats erectile dysfunction?  

Possible Answers:

Increased breakdown of nitric oxide

Inhibition of PDE5 activity

Increase in cGMP production

Increase in nitric oxide release

Decrease in cGMP breakdown 

Correct answer:

Increased breakdown of nitric oxide

Explanation:

For this question we have to select an answer choice that would decrease the prolonging of vasodilation.

The only answer choice that decreases vasodilation is by increasing the breakdown of nitric oxide, which is the first messenger in this signal transduction cascade to cause vasodilation. If nitric oxide breakdown is increased, vasodilation would decrease.

Increase in cGMP production, decrease in cGMP breakdown, inhibition of PDE5 activity, and increase in nitric oxide release would all prolong vasodilation. 

 

Example Question #12 : Cell Signaling

Sildenafil (commonly called Viagra) is a common drug used to treat erectile dysfunction and pulmonary arterial hypertension. Sildenafil's effect comes from its ability to cause vasodilation in smooth muscle cells. For this problem, we're only going to consider its effects on erections in males. 

Erectile dysfunction is a common medical problem in older men. Its most significant effect is the prevention of erections. Erections occur when there is an increase in blood flow via enlargement of an artery (vasodilation). Understanding the mechanism by which vasodilations occur is important in order to treat erectile dysfunction.  

Erections occur when nitric oxide  is released from an area in the penis and binds to guanylate cyclase in other cells of the penis, which creates cyclic guanosine monophosphate (cGMP) from GTP. cGMP causes a relaxation of the arterial wall in order to increase blood flow to the region, thereby causing an erection. cGMP is broken down over time by cGMP-specific phosphodiesterase type 5 (PDE5) into GTP, which reverses the effect and causes vasoconstriction on the arterial wall. Combatting this effect is the major method by which Viagra functions. 

Nitric oxide is which of these types of signals? 

Possible Answers:

Endocrine signal

Autocrine signal

Paracrine signal

Growth hormone

Neurotransmitter

Correct answer:

Paracrine signal

Explanation:

Nitric oxide, as stated in the passage, is a signal that is sent from an area in the penis to another area within the penis. Since this is signaling to nearby cells, it is an example of paracrine signaling. 

Example Question #1381 : Biology

The cellular membrane is a very important structure. The lipid bilayer is both hydrophilic and hydrophobic. The hydrophilic layer faces the extracellular fluid and the cytosol of the cell. The hydrophobic portion of the lipid bilayer stays in between the hydrophobic regions like a sandwich. This bilayer separation allows for communication, protection, and homeostasis. 

One of the most utilized signaling transduction pathways is the G protein-coupled receptor pathway. The hydrophobic and hydrophilic properties of the cellular membrane allows for the peptide and other hydrophilic hormones to bind to the receptor on the cellular surface but to not enter the cell. This regulation allows for activation despite the hormone’s short half-life. On the other hand, hydrophobic hormones must have longer half-lives to allow for these ligands to cross the lipid bilayer, travel through the cell’s cytosol and eventually reach the nucleus. 

Cholesterol allows the lipid bilayer to maintain its fluidity despite the fluctuation in the body’s temperature due to events such as increasing metabolism. Cholesterol binds to the hydrophobic tails of the lipid bilayer. When the temperature is low, the cholesterol molecules prevent the hydrophobic tails from compacting and solidifying. When the temperature is high, the hydrophobic tails will be excited and will move excessively. This excess movement will bring instability to the bilayer. Cholesterol will prevent excessive movement.

Which of the following are associated with the G protein-coupled receptor? 

I. Adenylate cyclase

II. Phospholipase C 

III. Diacylglycerol 

Possible Answers:

I, II and III 

III only

II and III only

II only

I only

Correct answer:

I, II and III 

Explanation:

Adenylate cyclase is utilized in the G protein-coupled receptor pathway to convert ATP to cAMP. Phospholipase C and diacylglycerol are also part of the G protein-coupled receptor pathway. 

Example Question #331 : Cell Biology, Molecular Biology, And Genetics

The cellular membrane is a very important structure. The lipid bilayer is both hydrophilic and hydrophobic. The hydrophilic layer faces the extracellular fluid and the cytosol of the cell. The hydrophobic portion of the lipid bilayer stays in between the hydrophobic regions like a sandwich. This bilayer separation allows for communication, protection, and homeostasis. 

One of the most utilized signaling transduction pathways is the G protein-coupled receptor pathway. The hydrophobic and hydrophilic properties of the cellular membrane allows for the peptide and other hydrophilic hormones to bind to the receptor on the cellular surface but to not enter the cell. This regulation allows for activation despite the hormone’s short half-life. On the other hand, hydrophobic hormones must have longer half-lives to allow for these ligands to cross the lipid bilayer, travel through the cell’s cytosol and eventually reach the nucleus. 

Cholesterol allows the lipid bilayer to maintain its fluidity despite the fluctuation in the body’s temperature due to events such as increasing metabolism. Cholesterol binds to the hydrophobic tails of the lipid bilayer. When the temperature is low, the cholesterol molecules prevent the hydrophobic tails from compacting and solidifying. When the temperature is high, the hydrophobic tails will be excited and will move excessively. This excess movement will bring instability to the bilayer. Cholesterol will prevent excessive movement.

Which of the following molecules can be found inside of a cell? 

I. Cyclic adenosine monophosphate (cAMP) 

II. Protein kinase A

III. Protein kinase C

Possible Answers:

II and III 

II only

III only 

I, II, and III

I only

Correct answer:

I, II, and III

Explanation:

Cyclic adenosine monophosphate, protein kinase A and protein kinase C are all second messengers in the G protein-coupled receptor pathway. Since they are second messengers, they amplify and transmit the signal throughout different compartments of the cell.  

Learning Tools by Varsity Tutors