All MCAT Biology Resources
Example Questions
Example Question #851 : Biology
Both the sympathetic and the parasympathetic nervous systems are essential for homeostasis and for survival. For example, when we are trying to run away from a threat, the sympathetic nervous system is in full effect to allow us to escape from danger. However, when there is no obvious threat, the parasympathetic nervous system tends to be more in control.
There are similarities and differences between the sympathetic and the parasympathetic nervous systems. In preganglionic nerve fibers, both the sympathetic and the parasympathetic nervous system utilize the neurotransmitter acetylcholine. Closer to the target organ, the parasympathetic nervous system remains dependent on acetylcholine whereas norepinephrine and epinephrine are the predominant neurotransmitters utilized by the sympathetic nervous system.
When norepinephrine and epinephrine bind to their receptors, different effects are carried out based on the type of receptor, affinity, and location of the receptor. For example, epinephrine has a higher affinity for the beta-2 receptor. When epinephrine binds to the beta-2 receptor, common effects include vasodilation and bronchodilation. Norepinephrine has a stronger affinity for the alpha-1, alpha-2 and beta-1 receptors. When norepinephrine binds to its receptor, common effects on the body include vasoconstriction (alpha-1), increased heart rate (beta-1) and uterine contraction (alpha-1).
In patients with heart failure, the physician might prescribe a beta blocker to help with the condition. How will a beta blocker be useful in patients with heart failure?
Blocking the beta-2 receptor, which prevents the heart from having to work as hard.
Blocking the beta-2 receptor, which will make the heart work harder.
Blocking the beta-1 receptor, which will make the heart work harder.
Blocking the beta-1 receptor, which will cause vasoconstriction.
Blocking the beta-1 receptor, which prevents the heart from having to work as hard.
Blocking the beta-1 receptor, which prevents the heart from having to work as hard.
The heart has the beta-1 receptor on its surface. When norepinephrine binds to beta-1 receptors on the heart, the effect is an increase in heart rate. In patients with a heart problem, increasing the heart rate might exhaust the heart and provoke heart failure. By blocking this receptor with a beta blocker, agonists to the beta-1 receptor cannot increase the heart rate.
Example Question #835 : Systems Biology And Tissue Types
Carbonic anhydrase is a very important enzyme that is utilized by the body. The enzyme catalyzes the following reaction:
A class of drugs that inhibits this enzyme is carbonic anhydrase inhibitors (eg. acetazolamide, brinzolamide, dorzolamide). These drugs are commonly prescribed in patients with glaucoma, hypertension, heart failure, high altitude sickness and for the treatment of basic drugs overdose.
In patients with hypertension, carbonic anhydrase inhibitors will prevent the reabsorption of sodium chloride in the proximal tubule of the kidney. When sodium is reabsorbed back into the blood, the molecule creates an electrical force. This electrical force then pulls water along with it into the blood. As more water enters the blood, the blood volume increase. By preventing the reabsorption of sodium, water reabsorption is reduced and the blood pressure decreases.
When mountain climbing, the atmospheric pressure is lowered as the altitude increases. As a result of less oxygen into the lungs, ventilation increases. From the equation above, hyperventilation will result in more being expired. Based on Le Chatelier’s principle, the reaction will shift to the left. Since there is more bicarbonate than protons in the body, the blood will become more basic (respiratory alkalosis). To prevent such life threatening result, one would take a carbonic anhydrase inhibitor to prevent the reaction from shifting to the left.
Carbonic anhydrase inhibitors are useful in patients with a drug overdose that is acidic. The lumen of the collecting tubule is nonpolar. Due to the lumen's characteristic, molecules that are also nonpolar and uncharged are able to cross the membrane and re-enter the circulatory system. Since carbonic anhydrase inhibitors alkalize the urine, acidic molecules stay in a charged state.
How can taking a carbonic anhydrase inhibitor help a patient with signs of heart failure?
By increasing the Sodium reabsorption
By lowering the blood pressure
By increasing the blood pressure
By increasing the water reabsorption
By increasing the heart contractibility
By lowering the blood pressure
As mentioned in the passage, carbonic anhydrase inhibitors will prevent the reabsorption of sodium and water at the proximal tubule. By preventing water reabsorption, the blood volume decreases. Lowering the blood volume will lower the blood pressure. The heart is constantly pushing blood against a pressure. The higher the blood pressure is, the more work the heart will have to do to push the blood out. Therefore, by lowering the blood pressure, the heart does not have to work as hard.
Example Question #873 : Mcat Biological Sciences
The liver primarily serves to help detoxify both endogenous and exogenous substances from the blood and intestines. Once blood from the intestines (delivered by the portal vein) or from the systemic circulation (delivered by the hepatic artery) enters the liver, it is filtered over liver cells called hepatocytes. Endogenous substances, such as bilirubin, and exogenous substances, such as drugs, are taken up by transporters on hepatocytes and undergo three phases of metabolism. The three phases allow the transported compound to be detoxified by a method of electron transfer (phase I), by addition of amino acid derivatives (phase II), and finally by exocytosis from the hepatocyte into the bile (phase III). The bile is then transported into the small intestine, and finally excreted from the body.
Amino acid derivatives are often taken from the Krebs cycle, added to sugar nucleotides, and transferred to molecules for detoxification. A common example of an enzyme responsible for this is UDP-glucuronosyl transferase.
The flow of substances through the liver follows the portal triad. The portal triad does not include which of the following structures?
Portal vein
Bile duct
Hepatic artery
Central vein
Central vein
The passage details the passage of substances through the liver. The portal triad consists of the portal vein, hepatic artery, and bile duct. Blood from the intestines enters the liver through the portal vein and is filtered by hepatocytes on its way to the central vein that connects to the inferior vena cava and onto the rest of the venous circulation. The liver is thus able to filter out toxic metabolites before they reach systemic circulation.
Example Question #841 : Systems Biology And Tissue Types
Which of the following vessels has the highest concentration of oxygen?
Skeletal capillaries
Pulmonary arteries
Pulmonary veins
Superior vena cava
Inferior vena cava
Pulmonary veins
The pulmonary veins have the greatest concentration of oxygenation, because they bring oxygenated blood from the lungs to the left atrium. They are the only veins that carry oxygenated blood.
Blood in the pulmonary arteries is deoxygenated and travels from the right ventricle to the lungs for gas exchange. Blood in the vena cavae is returning to the heart after systemic circulation, and is thus deoxygenated. Blood in the capillaries is a mixture of oxygenated and deoxygenated, but is always less oxygenated than the blood of the pulmonary veins.
Example Question #1 : Blood Vessels And Vasculature
Hemoglobin is the protein responsible for the transport of oxygen throughout the bloodstream. The saturation of hemoglobin can be graphed based on the pressure of oxygen. As the pressure of oxygen increases, the saturation of hemoglobin with oxygen will increase in a sigmoidal fashion. This oxygen dissociation curve can be shifted depending on the external conditions in the blood.
Where would hemoglobin have the lowest saturation percentage of oxygen?
The left atrium
The superior vena cava
The gastric artery
The pulmonary veins
The pulmonary artery
The pulmonary artery
Keep in mind that the saturation percentage of hemoglobin depends on the pressure of oxygen. Before returning to the lungs, hemoglobin has given up the majority of attached oxygen to the body's tissues. As a result, the hemoglobin will be least saturated just before entering the lungs to become oxygenated once again. This is why the pulmonary artery will contain blood with the lowest saturation of hemoglobin.
The low partial pressure of oxygen in the pulmonary artery, compared to the high partial pressure of oxygen in the alveoli, generates the gradient for oxygen to enter the blood stream.
Example Question #876 : Mcat Biological Sciences
In extremely cold temperatures, which of the following is most directly responsible for constricting blood flow to the skin in order to preserve heat?
Arteries
Arterioles
Venules
Capillaries
Arterioles
The arterioles feed into the capillaries, and control which tissues and parts of the body get more oxygenated blood. During cold weather conditions, the arterioles are activated in vasoconstriction of oxygenated blood to the capillary beds in the skin.
Example Question #1 : Blood Vessels And Vasculature
Edema is a condition caused by a build-up of fluid in the interstitium.
Which of the following is associated with edema?
Decreased hydrostatic pressure
High plasma albumin
Increased plasma oncotic pressure
Increased blood vessel wall permeability
Increased blood vessel wall permeability
Increased blood vessel wall permeability can lead to edema. Edema is the result of abnormal fluid homeostasis; proper fluid homeostasis is achieved by balancing hydrostatic pressure and oncotic pressure in blood vessels. If hydrostatic pressure is greater than oncotic pressure in a blood vessel, fluid will filter out of the blood vessel and into the interstitium. The Starling Equation describes fluid movement across capillary membranes in relation to hydrostatic pressure and oncotic pressure within the blood vessel.
Example Question #4 : Blood Vessels And Vasculature
Which of the following areas in the general circulation has the lowest blood pressure?
Vena cavae
Capillaries
Venules
Arteries
All of these have the same average blood pressure
Vena cavae
In the general circulation, the highest blood pressure is found in the aorta and the lowest blood pressure is in the vena cava. As this suggests, blood pressure drops in the general circulation as it goes from the aorta to the rest of the body. Pressure drops form the aorta to the arteries, the arteries to the arterioles, and the arterioles to the capillaries. Flow rate reaches a minimum in the capillaries before blood begins to pool in the venules. Pressure continues to drop from the venules to the veins to the vena cavae.
Example Question #5 : Blood Vessels And Vasculature
Which of the following best describes the cause of diastolic blood pressure?
Venous pressure
Elastic recoil of the aorta
Right ventricular contraction
The viscosity of blood
Elastic recoil of the aorta
Systolic blood pressure is generated by the contraction of the left ventricle and the ejection of blood into the aorta. As blood is ejected into the aorta, the aorta expands to accommodate the large volume of blood. The wall of the aorta then begins to recoil and pushes blood through the arteries. This is how blood pressure continues to stay elevated even when the heart is not contracted.
Right ventricular contraction causes blood to go into the pulmonary circulation, which is not measured with blood pressure testing. The viscosity of blood does not impact the pressure that is exerted on the wall of a blood vessel. Venous pressure is not typically measured, as it is much lower than arterial pressure and is relatively unaffected by heart contractions due to the narrowness of the preceding capillaries.
Example Question #2 : Blood Vessels And Vasculature
Where is blood pressure the greatest?
Pulmonary veins
Arterioles
Capillaries
The aorta
The aorta
Blood pressure tends to be the greatest near the heart, and decreases as blood flows to the capillaries. The pressure is greatest at the aorta and gradually decreases as blood moves from the aorta to large arteries, smaller arteries, and capillaries. The pressure is lowest in the venous system, which is why blood can pool in the veins and act as a "blood reservoir". Veins contain valves that allow them to pump blood back to the heart.
Certified Tutor
Certified Tutor
All MCAT Biology Resources
