Linear Algebra : Linear Algebra

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #3 : Matrices

Compute  where, 

Possible Answers:

Not Possible

Correct answer:

Explanation:

Since the number of columns in the first matrix equals the number of rows in the second matrix, we know that these matrices can be multiplied together.  To determine the dimensions of the product matrix, we take the number of rows in the first matrix and the number of columns in the second matrix.  For this example, our product matrix will have dimensions of (1x3). The product matrix equals, 

Example Question #4 : Matrices

Compute  where, 

Possible Answers:

Not Possible 

Correct answer:

Explanation:

Since the number of columns in the first matrix equals the number of rows in the second matrix, we know that these matrices can be multiplied together.  To determine the dimensions of the product matrix, we take the number of rows in the first matrix and the number of columns in the second matrix.  For this example, our product matrix will have dimensions of (2x1). The product matrix equals, 

Example Question #691 : Linear Algebra

Compute  where, 

Possible Answers:

Not Possible 

Correct answer:

Not Possible 

Explanation:

Since the number of columns in the first matrix does not equal the number of rows in the second matrix, you cannot multiply these two matrices. 

Example Question #8 : Matrix Matrix Product

Compute  where,

Possible Answers:

Not Possible 

Correct answer:

Explanation:

Since the number of columns in the first matrix equals the number of rows in the second matrix, we know that these matrices can be multiplied together.  To determine the dimensions of the product matrix, we take the number of rows in the first matrix and the number of columns in the second matrix.  For this example, our product matrix will have dimensions of (2x2). The product matrix equals, 

Example Question #2 : Matrix Matrix Product

Compute  where, 

Possible Answers:

Correct answer:

Explanation:

Since the number of columns in the first matrix equals the number of rows in the second matrix, we know that these matrices can be multiplied together.  To determine the dimensions of the product matrix, we take the number of rows in the first matrix and the number of columns in the second matrix.  For this example, our product matrix will have dimensions of (1x4). The product matrix equals, 

Example Question #6 : Matrices

Compute  where, 

Possible Answers:

Not Possible

Correct answer:

Explanation:

Since the number of columns in the first matrix equals the number of rows in the second matrix, we know that these matrices can be multiplied together.  To determine the dimensions of the product matrix, we take the number of rows in the first matrix and the number of columns in the second matrix.  For this example, our product matrix will have dimensions of (3x1). The product matrix equals, 

Example Question #11 : Matrices

Compute , where 

  

Possible Answers:

Not Possible

Correct answer:

Not Possible

Explanation:

In order to be able to multiply matrices, the number of columns of the 1st matrix must equal the number of rows in the second matrix.  Here, the first matrix has dimensions of (3x2). This means it has three rows and two columns.  The second matrix has dimensions of (3x2), also three rows and two columns.  Since , we cannot multiply these two matrices together

Example Question #11 : Matrices

.

Evaluate .

Possible Answers:

Correct answer:

Explanation:

The transpose of a matrix switches the rows and the columns. Therefore, the first column of  has the same entries, in order, as the first row of , and so forth. Since 

,

.

The entry in column , row  of the product  is the product of row  of  and column  of  - the sum of the products of the numbers that appear in the corresponding positions of the row and the column.  can consequently be calculated as follows:

,

the correct choice.

Example Question #11 : Matrix Matrix Product

Evaluate .

Possible Answers:

 is an undefined product. 

Correct answer:

Explanation:

The transpose of a matrix switches the rows and the columns. Therefore, the first column of  has the same entries, in order, as the first row of , and so forth. Since 

,

it follows that

The entry in column , row  of the product  is the product of row  of  and column  of  - the sum of the products of the numbers that appear in the corresponding positions of the row and the column. Therefore, 

Example Question #11 : Matrix Matrix Product

Evaluate .

Possible Answers:

 is an undefined product.

Correct answer:

 is an undefined product.

Explanation:

Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. Therefore, for the square of a matrix to be defined, the number of rows and columns in that matrix must be the same; that is, it must be a square matrix. , having two rows and three columns, is not square, so  cannot exist.

Learning Tools by Varsity Tutors