Linear Algebra : Linear Algebra

Study concepts, example questions & explanations for Linear Algebra

varsity tutors app store varsity tutors android store

Example Questions

Example Question #32 : Matrices

If  is a  matrix and  is a  matrix, can the product  be multiplied?  What about ?

Possible Answers:

 can be multiplied 

 cannot be multiplied

 can be multiplied 

 can be multiplied 

 cannot be multiplied 

 cannot be multiplied 

 cannot be multiplied 

 can be multiplied 

Correct answer:

 can be multiplied 

 cannot be multiplied

Explanation:

If  is an  matrix and  is an  matrix,  can only be multiplied if .

Since  is a  matrix and  is a  matrix,  and  can be multiplied.

 has  rows and  has  columns, therefore  cannot be multiplied.

Example Question #32 : Matrices

If  is a  matrix and  is a  matrix, what are the dimensions of the product ?

Possible Answers:

 cannot be multiplied

Correct answer:

Explanation:

If  is an  matrix and  is an  matrix, the dimensions of are .

In this problem, If  is a  matrix and  is a  matrix, so 

the dimensions of  are .

 

Example Question #31 : Matrix Matrix Product

If  is a  matrix and  is a  matrix, what are the dimensions of the product ?

Possible Answers:

 cannot be multiplied

Correct answer:

Explanation:

If  is an  matrix and  is an  matrix, the dimensions of are .

In this problem, If  is a  matrix and  is a  matrix, so 

the dimensions of  are .

 

Example Question #34 : Matrices

Find the product .

Possible Answers:

 

 cannot be multiplied

Correct answer:

Explanation:

 If  is an  matrix and  is an  matrix, 

 can only be multiplied if , or the number of columns in  equals the number of rows in .  Otherwise there is a mismatch, and the two matrices can not be multiplied.   will be an  matrix

Since  is a  matrix and  is a  matrix, then  can be multiplied and will have the dimensions 

To find the product , you must find the dot product of the rows of  and the columns of 

We find  by finding the dot product of the row  of  and column  of .

 

We find  by finding the dot product of the row  of  and column  of .

We use the same method to find  the rest of the matrix values

Example Question #35 : Matrix Matrix Product

Find the product .

Possible Answers:

 cannot be multiplied

Correct answer:

Explanation:

 If  is an  matrix and  is an  matrix, 

 can only be multiplied if , or the number of columns in  equals the number of rows in .  Otherwise there is a mismatch, and the two matrices can not be multiplied.   will be an  matrix

Since  is a  matrix and  is a  matrix, then  can be multiplied and will have the dimensions

To find the product , you must find the dot product of the rows of  and the columns of 

We find  by finding the dot product of the row  of  and column  of .

 

We find  by finding the dot product of the row  of  and column  of .

We use the same method to find  the rest of the matrix values

Example Question #31 : Matrix Matrix Product

Find the product .

Possible Answers:

 cannot be multiplied

Correct answer:

Explanation:

 If  is an  matrix and  is an  matrix, 

 can only be multiplied if , or the number of columns in  equals the number of rows in .  Otherwise there is a mismatch, and the two matrices can not be multiplied.   will be an  matrix

Since  is a  matrix and  is a  matrix, then  can be multiplied and will have the dimensions 

To find the product , you must find the dot product of the rows of  and the columns of 

We find  by finding the dot product of the row  of  and column  of .

 

We find  by finding the dot product of the row  of  and column  of .

We use the same method to find  the rest of the matrix values

Example Question #41 : Matrix Matrix Product

Find the product .

Possible Answers:

 cannot be multiplied

Correct answer:

Explanation:

 If  is an  matrix and  is an  matrix, 

 can only be multiplied if , or the number of columns in  equals the number of rows in .  Otherwise there is a mismatch, and the two matrices can not be multiplied.   will be an  matrix

Since  is a  matrix and  is a  matrix, then  can be multiplied and will have the dimensions 

To find the product , you must find the dot product of the rows of  and the columns of 

We find  by finding the dot product of the row  of  and column  of .

 

We find  by finding the dot product of the row  of  and column  of .

We use the same method to find  the rest of the matrix values

Example Question #42 : Matrices

Find the product .

Possible Answers:

 cannot be multiplied.

Correct answer:

 cannot be multiplied.

Explanation:

 If  is an  matrix and  is an  matrix, 

 can only be multiplied if , or the number of columns in  equals the number of rows in .  Otherwise there is a mismatch, and the two matrices can not be multiplied.   will be an  matrix

Since  is a  matrix and  is a  matrix,  so  cannot be multiplied.

Example Question #723 : Linear Algebra

Find the product .

Possible Answers:

 cannot be multiplied

Correct answer:

Explanation:

 If  is an  matrix and  is an  matrix, 

 can only be multiplied if , or the number of columns in  equals the number of rows in .  Otherwise there is a mismatch, and the two matrices can not be multiplied.   will be an  matrix

Since  is a  matrix and  is a  matrix, then  can be multiplied and will have the dimensions 

To find the product , you must find the dot product of the rows of  and the columns of 

We find  by finding the dot product of the row  of  and column  of .

 

We find  by finding the dot product of the row  of  and column  of .

We use the same method to find  the rest of the matrix values

Example Question #724 : Linear Algebra

Find the product .

Possible Answers:

 cannot be multiplied

Correct answer:

Explanation:

 If  is an  matrix and  is an  matrix, 

 can only be multiplied if , or the number of columns in  equals the number of rows in .  Otherwise there is a mismatch, and the two matrices can not be multiplied.   will be an  matrix

Since  is a  matrix and  is a  matrix, then  can be multiplied and will have the dimensions 


To find the product , you must find the dot product of the rows of  and the columns of 

We find  by finding the dot product of the row  of  and column  of .

 

We find  by finding the dot product of the row  of  and column  of .

We use the same method to find  the rest of the matrix values

 

Learning Tools by Varsity Tutors